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Abstract. Correspondence analysis (CA) is a statistical method that is widely 
used in multiple disciplines to reveal relationships amongst variables. Among 
others, CA has been successfully applied for microarray data analysis. One of 
CA’s strengths is its ability to help visualize the complex relationships that may 
be present in the data. In this sense, CA is a powerful exploratory tool that takes 
advantage of human pattern analysis abilities. The power of CA can, however, 
be diluted, if the patterns are embedded in data clutter. This is because CA is a 
dimensionality reduction approach and not a data reduction method; thus, is 
powerless to remove clutter. Unfortunately, our visual analysis abilities can be 
overwhelmed in such conditions causing failures in identifying relationships. In 
this paper, we propose a solution to this problem by combining CA with one-
way analysis of variance (ANOVA) and subsequently by clustering in the low-
dimensional space obtained from CA. We investigate the proposed approach 
using microarray data from 6200 S. cerevisiae genes and demonstrate how 
visual analysis is facilitated by removal of unnecessary clutter as well as 
facilitating the discernment of complex relationships that may be missed 
through application of CA alone. 

Keywords: Correspondence Analysis, UPGMA Clustering, One-way ANOVA, 
Microarray Time Course Data. 

1   Introduction 

Microarray technology enables the analysis of the mRNA levels of thousands of 
genes simultaneously providing a powerful tool for researchers. This technology has 
been widely used and became a standard tool for studying the fundamental aspects of 
growth and development of organisms as well as the genetic causes of many diseases. 
Microarrays provide an opportunity to study interactions not only among genes but 
also relationships between genes and experimental conditions. In microarray 
experiments, typically, gene expressions of thousands of genes are measured over a 
period of time, accumulating a large volume of data very quickly. Thus, such 
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experiments necessitate the development of efficient and automated way of analyzing 
the data. Furthermore, these analysis techniques must also ultimately help in data 
interpretation and data exploration; revealing the issues that need to be explored 
further. Consequently, solutions need not only to address issues of automation and 
algorithmic efficacy, but must also aid the human-algorithm interface.  

In this paper, we propose a method to address the somewhat dichotomous 
requirements of the above design formulation. In doing so, we base ourselves on a 
dimensionality reduction technique called correspondence analysis (CA) which has 
also been shown to be of promise in microarray data analysis [2]. CA offers a way of 
revealing the relationship between and among variables in a data set by applying a 
specific form of dimensionality reduction and produces a graph including all the 
variables in a single low-dimensional subspace. For instance, using CA, one may 
simultaneously visualize relationships between genes and hybridizations as well as 
within genes and within hybridizations. However, the interpretation of the visual 
results generated by CA still requires human intervention. The human visual system, 
though extremely powerful in discerning patterns, is not very efficacious in 
environments containing a large amount of self-similar data (cluttered environments). 
To address this issue, we propose the use of ANOVA and clustering in the reduced-
dimension space identified using CA. Our goal is to accentuate the meaningful data 
(signal) while minimizing the background data clutter and thus reduce the cognitive 
load during analysis. We begin this paper in the following with a review of related 
work and distinctions of the proposed approach from them. This is followed by a 
detailed description of the proposed method and experimental analysis of its 
performance.  

1.1   Prior Research and Overview of Proposed Method 

The microarray data analysis is one of the most heavily research areas in 
contemporary bioinformatics. However, most methods that have been proposed for 
this problem can be thought of as belonging to one of the following classes [2]: (1) 
clustering methods, (2) dimensionality reduction techniques, and (3) techniques that 
treat the problem as that within the classification/regression framework. Of these, the 
dimensionality reduction methods are of direct relevance for us. The commonly used 
methods in this class include principle component analysis (PCA) and Multi-
dimensional scaling (MDS). PCA utilizes the properties of covariance matrix and 
transforms correlated variables into orthogonal (uncorrelated) variables while 
preserving as much information as possible present in the original data set. The use of 
PCA in microarray data analysis was demonstrated by Raychaudhuri et al. [5] who 
successfully applied PCA to a sporulation time series microarray data to find the 
temporal gene expression patterns. MDS is a set of statistical methods to reveal the 
underlying structure of the data set by using a dimensionality reduction technique. 
MDS has been used in many applications of data mining; however, the computational 
complexity of MDS makes it difficult to apply the method to a large set of data [8]. In 
this context, Tzeng et al. [8] has developed a modified MDS which reduces the 
computational complexity of MDS, and proved effectiveness of MDS to expose 
correlation of certain human genes. 
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Like these two methods, CA is also a technique that belongs to the class of 
dimensionality reduction approaches. However, unlike the above class of methods, 
CA has certain properties that make it more suitable for revealing association among 
variables. Specifically, CA can aid in investigating the association amongst variables 
(row and column variables) by projecting them in single joint space. Furthermore, CA 
has a low computational complexity. Thus, if our goal is to study the 
interdependencies between genes and hybridizations (experimental conditions), then 
correspondence analysis is arguably a very apt technique. This conclusion was 
demonstrated by Fellenberg et al. in their seminal paper [2].  Fellenberg et al. applied 
CA to the Saccharomyces cerevisiae gene expression microarray data produced by 
Spellman et al. [6], and successfully showed that CA can be used to visualize 
relationships between genes and experimental conditions. However, the method in [2] 
did not address the issue of data clutter. Furthermore, dimensionality reduction 
approaches (CA included) require a complete data matrix and cannot function in the 
presence of missing information. However, it is inevitable to avoid missing values 
when dealing with microarray data. Such questions were also not considered in [2]. 
Finally, at the current state-of-the-art, the question of algorithmic analysis beyond 
application of CA has not been considered. In our work, we address all these 
questions in context of the problem of relating the genes of S. cerevisiae to the 
specific cell-cycle phases in which they are expressed. For this purpose, the 
microarray data compiled by Spellman [6] is represented in a matrix containing genes 
in rows and cell cycle phase time points in columns. 

In the proposed method, first, the missing data problem is addressed. To replace 
missing values,  we investigate several missing value estimation techniques, including 
row average, cell cycle row average, and Bayesian Principle Component Analysis 
(BPCA) (http://hawaii.sys.i.kyoto-u.ac.jp/~oba/tools/BPCAFill.html). These methods 
are evaluated in terms of the percentage of correctly associated gene-cell cycle phase 
pairs after correspondence analysis. Thus, our assessment studies the impact of these 
techniques on the actual analysis. Our assessment criterion is different (and arguably 
richer) than the standard approach of synthetically removing data and using linear 
error measures (such as RMSD) to judge efficacy. We next address the issue of 
ameliorating data clutter in two steps; the first step occurs before application of CA. 
In this step, we apply ANOVA to the microarray data to identify the genes showing 
differential expression. The effectiveness of ANOVA in determining genes with 
differential expression was proved by Cui et al. [1]. By performing ANOVA, we 
reduce the data (by filtering out genes that are expressed in the constant levels) 
without negatively influencing subsequent analysis. Furthermore, removal of non-
differentially expressed genes also reduces the computational requirements from 
subsequent analysis steps and simplifies visual analysis. Next, we perform the 
dimensionality reduction step by using CA. This specific step is similar to the work in 
[2]. Following CA, we perform clustering in the low dimensional space to further 
reduce data clutter and aid in interpretation. In this paper, we use UPGMA algorithm 
to further study relationships between genes. We note that other clustering algorithms 
are equally applicable. Our choice of the specific clustering method is motivated by 
two reasons: first, the UPGMA algorithm is well understood leading to easier analysis 
of the final outcomes, especially as the clustering is performed on a reduced 
dimensional yet information-rich subspace. Second, the input data for UPGMA is a 
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distance matrix which can be easily constructed by calculating the distances between 
all data points in the correspondence subspace. The UPGMA produces an ultrametric 
tree, depicting the relationships among data elements. Analysis of the tree can provide 
additional information about the associations among variables which cannot be 
discerned easily from the output of correspondence analysis alone.     

2   Proposed Approach 

2.1   Data Set 

To evaluate our implementation of computational methods, we use the microarray 
data of Saccharomyces cerevisiae collected by Spellman et al. [6] as an input data. 
The data set contains the color intensities of approximately 6200 S. cerevisiae genes 
whose gene expression was synchronized by four different synchronization methods: 
α-factor, CDC15, CDC28 and elutriation. For each method, the gene expression was 
recorded every 10 minutes for up to 390 minutes. Each time point (10 minute interval) 
is mapped to the biological cell cycle phases, namely M/G1, G1, S, S/G2 and G2/M 
[6]. A CSV file containing the microarray data is created and used as an input file for 
the program developed in this paper.  

2.2   Missing Value Estimation 

Correspondence analysis requires a complete set of data. Unfortunately, gene 
expressions measured by microarrays often include missing values; thus, a missing 
value estimation step is necessary for further analysis. Three missing value estimation 
methods are evaluated as part of our investigations: (1) missing value estimation by 
row average, (2) by cell cycle row average, and (3) by the Bayesian Principle 
Component Analysis Missing Value Estimator [4]. The effectiveness of a missing 
value estimation method is evaluated by computing the percentage of correctly 
associated gene-cell cycle phase pairs based on the microarray data published by 
Spellman et al. [6].  For the missing value estimation by row average, the average 
gene expression value of each row is calculated and used to fill in the missing values. 
Similarly, missing value estimation by cell cycle row average imputes the missing 
values by calculating the average of the row by only using the columns that belong to 
the same phase as the missing value. The BPCA Missing Value Estimator is a 
publicly available program developed by Oda et al. [4].   

2.3   Identification of Non-differential Genes Using ANOVA 

Our interest is to identify genes showing different temporal profiles through cell cycle 
phases and associate these genes with a specific cell cycle phase. Therefore, genes 
that are constantly expressed at the same level throughout the cell cycle phases, such 
as house keeping genes, can be filtered out prior to correspondence analysis and 
UPGMA. After estimating missing values, the one-way ANOVA method is applied to 
the microarray data to identify the genes that are showing differential expression. The 
F value calculated by ANOVA is evaluated against the critical F value to determine if 
genes are expressed differently through cell cycle phases.  
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The microarray data contains genes in rows and cell cycle phase time points in 
columns. Since the columns represent cell cycle phase time points, they can be 
categorized by cell cycle phases, and the columns belonging to the same cell cycle 
phase can be considered as a group in the ANOVA process.  To perform ANOVA, the 
total sum of square is calculated. The total sum of square is defined by the following 
equation: 

∑ −=
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XSS total

2
2

 
(1)

In the above equation, X represents the sum of squared data points in a group; G is the 
sum of all the data points; and N is the total number of data points. Next, the squared 
sum within a group is calculated in Eq. (2), where n is the number of data points in a 
group. Similarly, the squared sum between the groups is calculated in Eq. (3) below. 
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where T is the sum of data points for each group. After calculating the above values, 
SStotal should equal the sum of SSbetween and SSwithin. The means of squares within and 
between are calculated by:  

MSwithin = SSwithin / dfwithin (4) MSbetween = SSbetween / dfbetween (5)

where df stands for the degree of freedom (which by N – 1). By using the means of 
squares within and between, F-statistics value is calculated as follows: 

within
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MS
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  (6)

The F-statistics value indicates the variance among the groups. Therefore, genes 
with a higher F-statistics value than the critical F value show differential expression 
during the cell cycle and are subject to further analysis by correspondence analysis. 

2.4   Correspondence Analysis 

CA is applied to the genes that are identified by the ANOVA process as genes 
showing differential expression. Here, by using correspondence analysis, our aim is to 
associate a gene with a specific cell cycle phase by identifying a cell cycle phase in 
which the gene is up-regulated or down-regulated. The microarray data is represented 
as I x J matrix containing genes in rows and cell cycle phase time points in columns. 
The symbols I and J denote for the number of genes and the number of cell cycle 
phase data points respectively. A datum in a matrix at the ith row and the jth column 
is written as nij. After a series of matrix manipulations, correspondence analysis 
calculates coordinates of the row variables (genes) and the column variables (cell 
cycle phases), which are then used to plot a graph in the desired dimension [3]. The 
main steps of correspondence analysis are the followings [2, 3]: 

Step 1: The mass of each column and row are calculated. The mass of a column is 
defined as the sum of the data elements in the column divided by the sum of all data 
elements. 
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cj = n+j / n++ (7) ri = ni+ / n++ (8) 

In Eq. (7), cj is the mass of the jth column, n+j is the sum of the data at the jth column, 
and n++ denotes the sum of all the elements in the matrix. Similarly, the mass of a row 
is calculated in Eq. (8), where ri represents the mass of the ith row, and ni+ is the sum 
of the data in the ith row. 

Step 2: A correspondence matrix P is calculated by dividing each datum by the sum of 
all the data elements as shown in Eq. (9).  

pij = nij / n++ (9) crcrps jijiijij
)( −=

 
(10)

In Eq. (9), pij is a value in the correspondence matrix at the ith row and the jth 
column, and  nij represents a data point at the ith row and the jth column in the 
original matrix.  

Step 3: By using the values form the correspondence matrix, the singular matrix S is 
derived using Eq. (10), where sij represents a value in the singular matrix and ri and cj 
are the mass of the ith row and the jth column respectively.  

Step 4: The matrix S is factored using singular value decomposition (SVD). We use 
the Java Matrix package (http://math.nist.gov/javanumerics) to compute the SVD. As 
a consequence of the SVD, the matrix S is decomposed into three matrices U, Λ, and 
V as shown in Eq. (11). 

S = UΛVT (11)

In Eq. (11), U denotes the matrix containing left singular vectors, Λ stands for a 
diagonal matrix containing diagonal elements in a sorted order, and V denotes the 
matrix containing the right singular vectors.  

Step 5: The values from the U, Λ, and V matrices are used to determine a 2D mapping 
of the data where the row variables (genes) are mapped to the x-axis and the column 
variables (cell cycle phases) are mapped to the y-axis. The row variable (gene) 
coordinates are calculated as shown in Eq. (12). 

fik = λk*υik* ir  (12) gjk = λk*νjk* jc  (13) ∑∑
−

=
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In Eq. (12), fik is a gene coordinate at the ith row and the kth column where k = 1,…, 
J. The λk denotes a diagonal element in the singular matrix Λ at the kth position. The 
υik represents a value in the U matrix at the ith row and the kth column. Similarly, the 
coordinates of the column variables (cell cycle phases) are calculated using Eq. (13), 
where gjk is a cell cycle phase coordinate at the jth row and the kth column with k = 
1,…, I, and νjk stands for a value in the V matrix at the kth position. The gene 
coordinate and cell cycle phase coordinate matrices are multidimensional matrices, 
and each column represents a dimension. For instance, the first column contains the x-
axis values (the 1st dimension), and similarly the second column contains the y-axis 
values (the 2nd dimension). Since a two-dimensional graph is plotted in this paper, the  
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values from the first two columns are used for drawing a biplot. This constitutes a 
dimensionality reduction step. Although correspondence analysis retains information 
present in the original data as much as possible, some information is lost during the 
dimensionality reduction process.  The information lost in the process is called inertia, 
and is calculated by Eq. (14). 

2.5   UPGMA Clustering in the Correspondence Subspace 

UPGMA is a hierarchical clustering algorithm for grouping data points based on 
distances between elements in a cluster. UPGMA takes a dissimilarity matrix as an 
input and joins the nearest clusters until only one cluster is left. First, the nearest 
clusters are identified by finding the pairwise minimum distance between elements. 
These clusters are removed from the dissimilarity matrix, and a new joint cluster is 
inserted. The new cluster contains the average distances between elements in two 
clusters that are merged. The procedure to join nearest clusters and compute distances 
for the new cluster is repeated until all the clusters are joined. The information about 
joined clusters and the minimum distances are saved through the iterations and used 
to construct an ultrametric tree to show the relationships between the elements.    

3   Experimental Investigations and Results 

The proposed method was applied to the yeast gene microarray data [6] to 
demonstrate the effectiveness of the combined methods. The data set contains 6179 
genes in rows and 73 cell cycle phase time points in columns, and the columns are 
categorized into five different cell cycle phases. We evaluated our results by 
comparing our gene-cell cycle associations against the list of gene-cell cycle pairs 
created by Spellman et al. [6]. The percentage of correctly associated gene-cell cycle 
pairs was calculated using the metrics of precision and recall. Precision is the fraction 
of correctly associated gene-cell cycle pairs within the data set analyzed by the 
program. On the other hand, recall refers to the fraction of correctly associated gene-
cell cycle pairs in the data set containing all the known gene-cell cycle pairs identified 
by Spellman et al. [6]. In this section, we present the results obtained from missing 
value estimation, ANOVA, correspondence analysis and UPGMA, following the 
order the procedures were applied.   

3.1   Missing Value Estimation 

Three missing value estimation techniques: estimation by row average, cell cycle row 
average and BPCA Missing Value Estimator [4], were evaluated in this project. Each 
technique was assessed by calculating the percentage of genes that were associated to 
a correct phase after the CA step. By doing so, our goal was to assess the impact of 
the missing value estimation method on the overall analysis. The results are shown in 
Fig. 1.  
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Missing value estimation by cell
cycle row average produced
approximately 77.50% and 69.84%
of correct gene-cell cycle phase
pairs in precision and recall
respectively, producing the best
results among the techniques
evaluated in this paper. The row
average method produced about
77.44% and 69.59% in terms of
precision and recall, and BPCA
Estimator resulted in the precision 
of 76.59% and the recall of 69.21%.
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Fig. 1. The graph shows the precision and recall in 
percentage using different missing value estimation 
techniques after CA 

3.2   Influence of ANOVA 

In the ANOVA process, 3054 genes were identified as genes showing differential 
expression using the F critical value at p = 0.3. This included approximately 90.11% 
of the differentially expressed genes identified by Spellman et al. [6]. These genes 
constituted our “genes of interest” [7] and served as an input data set for 
correspondence analysis. To evaluate the effectiveness of ANOVA, the percentages 
of correctly associated gene-cell cycle phase pairs were compared with and without 
ANOVA. Without using ANOVA, the percentage of genes assigned to a correct phase 
after CA was approximately 28.79%, and the ratio was increased to 69.84% when 
ANOVA was incorporated. 

3.3   Analyzing the Data Using Correspondence Analysis and Clustering 

The biplot in Fig. 2 was produced by applying correspondence analysis on the genes 
of interest. In the graph, genes are represented by black dots, and the cell cycle phase 
data points are in various shapes according to the assigned phase. The cell cycle phase 
centroids were calculated by plotting the average x-coordinate and y-coordinate of the 
data points belonging to each cell cycle phase. The lines were extended from  
the origin of the graph to the centroids, so that the user can readily recognize the 
scattering pattern of cell cycle phase data points. For purposes of the comparison with 
Fellenberg et al. [2], we added the labels to the genes that are known to participate in 
histone production. Histones are used to coil strands of DNA; thus, histone related 
genes should be up-regulated during the DNA synthesis phase, as shown in Fig. 1. 
There is an empty spot surrounding the origin of the graph. In a correspondence 
analysis graph, data points closer to the origin of the graph do not show a strong 
association to any of the other data points. In the context of our problem, the genes 
near the center do not show differential expression. The ANOVA step removed such 
genes prior to the application of CA. It should be noted that from a visual analysis 
perspective, this reduces unnecessary clutters due to genes that are irrelevant (non-
differentially expressed). Our CA biplot resembled the biplot produced by Fellenberg 
et al. [2]. A visual inspection of two biplots reveled that the locations of cell cycle 
phase data points, histone genes, and the order of cell cycle phase clusters show 
similarities between two graphs. 
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Fig. 2. Biplot produced by correspondence analysis. Black dots represent genes and the 
symbols represent cell cycle phase time points. Lines were extended to centroids. The histone 
genes cluster around the S cell cycle phase. 

In CA, genes were associated to a cell cycle phase by identifying the closest phase 
centroid and the percentage of correct gene-phase associations was calculated in terms 
of precision and recall. The precision measures the accuracy of our analysis given our 
data set, and the recall measures the accuracy against the complete data set. After 
application of CA, the precision was calculated to be 77.50%, and the recall was 
found to be 69.84%. The reader may note that in the work by Fellenberg et al. [2], this 
type of assessment of accuracy was not performed.  

In the final step of our method, the data in the correspondence subspace were 
clustered by using the UPGMA algorithm. The coordinates of data elements in the 
CA biplot were used to construct a distance matrix, containing the all-pair Euclidean 
distances (computed in the correspondence subspace). The UPGMA algorithm was 
applied using the distance matrix and the tree structure in Newick format was 
produced by UPGMA. Fig. 3 represents a dendrogram constructed based on the 
Newick string. By inspecting the dendrogram, it can be noticed that the genes 
assigned to the same cell cycle phase cluster together, and these clusters are placed in 
a pattern. The most noticeable cluster is the G1 cluster (in black) occupying the large 
part of the second row in Fig. 3. This observation consists with the correspondence 
biplot produced in the CA step, which also shows a large number of G1 genes 
crowded together in one area. In the Fig. 3 dendrogram, the clusters appear in the 
order of: M (blown) (mixed with some G2), G1 (black), S (blue), G2 (red), S, G1 (the 
long stretch), M/G1 (orange), and M. Barring a few exceptions, this order resembles 
the reverse order of the cell cycle phases: M, G2, S, G1, and M/G1. We can also 
notice large clusters of M genes present both at the beginning and the end of the 
dendrogram. This is due to the circular distribution of the data in the reduced 
dimensional correspondence subspace as can be seen in Fig. 2. 
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Fig. 3. The dendrogram constructed by UPGMA clustering. A leaf represents a gene. The genes 
are color coded according to the cell cycle phase assigned by Spellman et al. [6]. The color 
codes are: M/G1 genes in orange, G1 genes in black, S genes in blue, G2 genes in red, and M 
genes in brown. Histone genes are circled in blue. Note that the continuous dendrogram was 
divided in sections to fit in the paper. 

 
In the relation to the 

correspondence biplot, the clusters 
appearing in the correspondence 
subspace stay as clusters in the 
dendrogram. For example, the 
histone genes assigned to the S cell 
cycle phase formed a cluster in 
both CA biplot (Fig. 2) and in the 
dendrogram (Fig. 4).  In addition, 
the genes surrounding the cluster 
centroids in the CA biplot tend to
 

 

  
Fig. 4. The blue circle in Fig. 3 is magnified here to 
show a cluster containing histone genes 

form large clusters in the dendrogram. There are some genes that are spread in a 
different phase cluster, e.g. a dozen G2 genes are interspersed among the M phase 
genes at the beginning of the dendrogram, and several M/G1 genes are spread among 
the long stretch of the G1 cluster. It is usually found that when random genes disturb a 
cluster, these random genes belong to a neighboring cluster.     

4   Conclusions and Discussions 

This paper demonstrates a novel approach to reveal hidden relationships among 
variables by combining CA with ANOVA and UPGMA-based clustering. The method 
provides a simple visual representation of the complex relationships in the data. 
Through the application of ANOVA, the accuracy of the analysis was increased by 
approximately 41.0% and the data set was reduced by 50.0%. In the process of 
applying ANOVA, about 9.0% of relevant genes were lost. CA associated 
approximately 77.5% of the genes to the correct cell cycle phase and produced a 
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graph exposing associations among the data elements. The UPGMA algorithm, which 
was applied to the correspondence subspace, revealed additional associations not only 
between genes and cell cycle phases, but also within genes. UPGMA produced a 
hierarchical graph revealing the clusters of genes, while showing how strongly the 
clusters were related. One of the thrust areas of our further research is to reduce the 
percentage of relevant genes that were eliminated by ANOVA. The source code and 
input files for this project are publicly accessible at http://tintin.sfsu.edu/projects/ 
mace.html. 
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