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Abstract. Identifying the disulfide bonding pattern in a protein is critical to un-
derstanding its structure and function. At the state-of-the-art, a large number of
computational strategies have been proposed that predict the disulfide bonding
pattern using sequence-level information. Recent past has also seen a spurt in
the use of Mass spectrometric (MS) methods in proteomics. Mass spectrometry-
based analysis can also be used to determine disulfide bonds. Furthermore,
MS methods can work with lower sample purity when compared with x-ray
crystallography or NMR. However, without the assistance of computational
techniques, MS-based identification of disulfide bonds is time-consuming and
complicated. In this paper we present an algorithmic solution to this problem
and examine how the proposed method successfully deals with some of the key
challenges in mass spectrometry. Using data from the analysis of nine eu-
karyotic Glycosyltransferases with varying numbers of cysteines and disulfide
bonds we perform a detailed comparative analysis between the MS-based ap-
proach and a number of computational-predictive methods. These experiments
highlight the tradeoffs between these classes of techniques and provide critical
insights for further advances in this important problem domain.

1 Introduction

Cysteine residues have a property unique among the amino acids, in that they can pair
to form a covalent bond, known as a disulfide bond. These bonds are so named be-
cause they occur when each cysteine’s sulfhydryl group becomes oxidized following
the reaction

S-H+S-H — S-S + 2H (1)

Because disulfide bonds impose length and angle constraints on the backbone of a
protein, knowledge of the location of these bonds significantly constrains the search-
space of possible stable tertiary structures which the protein folds into. The disulfide
bond pattern of a protein also can have an important effect on its function. For exam-
ple, in [1] it is shown that the sterical structure formed by disulfide bonds in ST8Sia
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IV is critical for it to catalyze the polysialylation of NCAM, the neural cell adhesion
molecule. NCAM has an important role in neuronal development and regeneration.

At the state-of-the-art, techniques for disulfide bond determination can be classi-
fied into three primary groups: (1) Crystallographic techniques producing high-
resolution three dimensional structures of proteins, where the disulfide bonds can be
observed directly. (2) Algorithmic techniques that predict (or infer) the disulfide con-
nectivity based on sequence data. (3) Mass-spectrometry-based techniques that detect
disulfide bonded peptides by analyzing a mixture of peptides obtained by targeted
digestion of an intact protein.

Crystallographic methods can be used to study a subdomain of the protein that is
sufficiently soluble and may form crystals. However, such methods can rarely be
used in medium or high-throughput settings. Consequently, in the recent past, signifi-
cant attention has been given to computational methods that can predict disulfide
connectivity based on sequence information alone [2-10, 27]. An important advan-
tage of these predictive methods lies in the fact that they require only sequence-level
data to make predictions. Recent results in this area have reported high accuracies
with O, values (fraction of proteins in the test set with disulfide connectivity correctly
predicted) in the 70 — 78% range. These methods also report high Q. (sensitivity)
values. However, in interpreting, extrapolating, and understanding these performance
values, the following considerations are especially critical:

1. Most of the reported results use a dataset called SP39 of non-redundant se-
quences derived from the SWISS-PROT database (release no. 39) proposed in
[5]. To ensure quality, this dataset only includes sequences containing infor-
mation from PDB for which intra-chain disulfide bonds are annotated. Further,
disulfide assignments described as “by similarity”, “probable”, or “potential”
are excluded. Two issues emanating from the use of this standard dataset need
to be emphasized. On one hand, it undeniably leads to uniformity and ease in
comparing results. However, it also invariably leads to methods being opti-
mized in context of a fixed standard. For this reason alone, care needs to be
taken in extrapolating the performance on SP39 to arbitrary data. It must be
noted, that certain methods (such as [7, 8]) have used multiple datasets in addi-
tion to SP39, in assessing performance.

2. In many methods, learning and testing have often been done in a cross-
validated settings rather than involving independent datasets. This leaves open
the issue of training bias and its possible impact on the performance of these
methods on completely novel datasets.

3. In SP39 as well as the other datasets used, only a limited disulfide-bonding to-
pology (consisting of intra-bonded cysteines) is considered. This has putative
implications regarding the applicability of these methods to more complex
bonding topologies.

In contrast to computational-predictive methods, mass spectrometric approaches,
which involve direct measurements, provide a conceptually different approach to
disulfide bond determination. The choice between these two classes of methods re-
quires studying the tradeoffs between the model-and-predict strategy used in predic-
tive methods and the direct measurement principle underlying mass spectrometric
techniques. The investigations presented in this paper are motivated by the above
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discussion. Specifically, we pursue two goals. First, we investigate some of the key
computational challenges associated with mass-spectrometry-based disulfide bond
determination. Second, through experimental studies conducted on nine eukaryotic
Glycosyltransferases with varying numbers of cysteines and disulfide bonds, we
investigate the aforementioned tradeoffs between purely predictive methods and an
MS-based approach.

2 Previous Work

A variety of techniques have been proposed for determining disulfide bonding pat-
terns including crystallographic approaches, computational predictive strategies, and
methods combining mass spectrometric and algorithmic techniques. A comprehen-
sive review of algorithmic methods for this problem is presented in [11]. Broadly
speaking, algorithmic approaches can be classified into two major classes: (1) tech-
niques that predict (or infer) the disulfide connectivity based on sequence data, and
(2) techniques that algorithmically analyze a mixture of peptides obtained by targeted
digestion of an intact protein using mass spectrometry and thereby seek to detect
disulfide bonds.

Techniques based on sequence data are based on characterizing a heuristically de-
fined local sequence environment and address one of two correlated problem formula-
tions. The first, residue classification, involves distinguishing the bonded cysteine
residues from the free residues. Early techniques for residue classification either
analyze the statistical frequency of amino acid residues in neighborhoods around the
cysteines [12] or encode the local sequence environment of residues and solve the
classification problem using machine learning methods in a supervised setting [13,
14]. Other methods [15], have combined the use of both local and global descriptors
and/or hybrid classifiers [16]. While it is difficult to directly compare the prediction
performance of these methods due to differences in datasets, most descriptor and
classifier choices in the aforementioned works lead to prediction accuracies of greater
than 78% with [16] reporting prediction accuracy of 87.4% on chains containing two
or more cysteines and 88% overall accuracy. Other techniques, such as [12,15] have
also reported prediction accuracies in the 82% - 84% range.

The second formulation, connectivity prediction, employs techniques that seek to
define the complete disulfide connectivity pattern of a protein. In [17], the connec-
tivity pattern was determined by first constructing a completely connected graph G.
Four different formulations of contact potential were used for weighting the edges
and the disulfide connectivity was defined as the solution of the maximum weight
perfect matching problem on G. In [18], a recursive neural network (RNN) was used
for scoring undirected graphs that represent connectivity patterns by their similarity
to the correct graph. The idea of RNN formed the basis of the DISULFIND predic-
tion server [19]. In [20] the notion of utilizing the specificities in the sequence
neighborhood of cysteines was extended to take advantage of cysteine distributions
in secondary structure elements. In [8], the chain classification problem was ad-
dressed using evolutionary information and kernel methods. Other approaches to
this problem include the use of cysteine separation profiles [9, 10] and comparisons
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with an annotated database, as done in the CysView server [22]. The highest Q,
scores (fraction of correctly assigned proteins) reported were in the 70% — 78%
range [8, 22].

The basic strategy for determining disulfide bonds using mass spectrometry con-
sists of the following steps: First, the protein of interest is cleaved in its non-reduced
state between as many of the cysteine residues as possible using proteases like trypsin
or chymotrypsin. Second, the resultant peptides, including disulfide-linked peptides,
are separated and analyzed by electrospray ionization (ESI) or matrix-assisted laser
desorption/ionization (MALDI). These mass spectrometry techniques allow peptide
and protein molecular ions to be put into the gas phase without fragmentation. The
analysis is a two step process and involves measuring the mass-to-charge (m/z) ratio
of the ionized disulfide-linked peptides (also called the parent or precursor ion) along
with measurement of the m/z ratio of the product ions. Subsequently, the peptides’
ions are fragmented to confirm the sequence identity of the disulfide-linked peptides
and thereby the location of one of the protein’s disulfide bonds.

In spite of the seeming simplicity of this process, the determination of disulfide
bonds using mass spectra is complex. This is because the number of possible disul-
fide bonding models grows rapidly with the number of cysteines and the number of
expected disulfide bonds. Furthermore, measurements of fragment-based bonding
patterns can be influenced by noise and need to be coalesced into an overall connec-
tivity pattern that is physically consistent. These issues constitute the key challenges
for an algorithmic approach that seeks to utilize mass-spectrometric data for disulfide-
bond determination.

3 Disulfide Bond Determination Using Mass Spectrometry Data

Based on the above discussion, we identify three main computational challenges: (1)
efficiently searching the combinatorial space of peptides and fragmented peptides to
determine (mass-based) correspondences with the mass spectrum/tandem mass spec-
trum. These correspondences would indicate putative disulfide bonds. (2) Ranking
and filtering the correspondences to exclude effects of noise. (3) Determining the
global pattern of disulfide bonds for the molecule.

3.1 Basic Definitions and Computational Formulation

A cysteine-containing peptide C is a defined to be a peptide that has at least one of its
amino acids identified as a cysteine residue. A disulfide bonded peptide structure
consists of one or more cysteine-containing peptides that contain one or more disul-
fide bonds. The disulfide bond mass space DMS = {Dm;} is the set of masses of
every possible disulfide bonded peptide structure for a protein. During LC/ESI, pre-
cursor ions are generated. A precursor ion is a peptide or disulfide bonded peptide
structure that has been ionized, so that a charge to mass ratio associated with it ap-
pears as part of the mass spectrum of a protein. A precursor ion mass list PML =
{Pm;} is the set of numbers that represent the masses of the precursor ions obtained
from a LC/ESI-MS/MS experiment. The PML is a representation of the mass spec-
trum that has been processed to remove noise from the experimental procedure, and



144 T. Lee and R. Singh

has been expanded to address uncertainties in the charge state of the ion, as well as
neutral loss. A precursor match between DMS and PML occurs when the difference
between their values is below a predefined threshold. We denote the set of precursor
matches as the Initial Match IM = between PML and DMS. During the MS/MS step,
peptides undergo collision-induced dissociation (CID), generating peptide fragments.
The fragments produced are mostly either b-ions containing the peptide’s N-terminus
or y-ions containing its C-terminus. A cysteine-containing peptide fragment is a pep-
tide fragment that has at least one of its amino acids identified as a cysteine residue.
A disulfide bonded peptide fragment structure consists of one or more cysteine-
containing peptide fragments that contain one or more disulfide bonds. The disulfide
bonded fragment mass space FMS = {Fm;} is the set of the masses of every disulfide
bonded fragment structure that can be obtained from a disulfide bonded peptide struc-
ture. A MS/MS mass list TML = {Tm;} is the set of numbers corresponding to the
masses of the peptide fragments obtained from a precursor ion in a LC/ESI-MS/MS
experiment. A MS/MS match between TML and FMS occurs when the difference
between the corresponding elements of TML and FMS is less than a predefined
threshold. We denote the set of MS/MS matches as the Confirmed Match CM be-
tween TML and FMS.

The number of elements in a Confirmed Match is an indication of the degree to
which the LC/ESI-MS/MS data supports the presence of a particular disulfide bonded
peptide fragment. In our case the identification of the peptide structure shows us
which cysteine residues are participating in disulfide bonds. Thus, by aggregating the
all the Confirmed Matches for a protein analyzed by LC/ESI-MS/MS, we can arrive
at the overall disulfide bond pattern for the protein. In doing so, we need to ensure not
only that the overall connectivity pattern is physically consistent (no cysteine partici-
pates in more than one disulfide bond) but also that the pattern is the most likely one
given the data. The primary challenges for determining the disulfide-bond connec-
tivity therefore include:

1. Finding an efficient way to obtain the initial match IM between the PML and the
disulfide bond mass space DMS.

2. For each initial match, efficiently determining the confirmed match between the
disulfide bonded fragment mass space FMS and the TML.

3. Aggregating the confirmed matches into a weighted graph enabling the computa-
tion of the overall disulfide bond pattern.

3.1.1 Determining the Initial Match

We first examine how to construct the DMS for a disulfide bond topology consisting
of an arbitrary number of peptides. For this analysis, let k denote the number of sites
where an arbitrary protein A can be cleaved with a certain protease. As a result, A is
divided into k+1 peptides. For most proteins and proteases, each peptide contains at
most one cysteine residue. These peptides can form interbonded disulfide bonds with
other peptides. If a peptide contains two or more cysteines, an intrabonded disulfide
bond may be present. For this case, the time needed to construct of the DMS equals
the time required to search each peptide to determine which peptides contain two or
more cysteine residues. Because there are k+1 peptides, the overall complexity to
construct the DMS for this topology is O(k). Extending this line of argument, it can
be shown that for the n-peptide case, the mass space requires O(k") time to compute.
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This complexity can be reduced if the data structure used to construct and search the
DMS does not require computing the mass of every member of the DMS. Such a data
structure can be constructed by identifying every possible disulfide bonded peptide
structure and then storing each as an element in a pre-computed state. For example, if
a protein has the three cysteine-containing peptides pl, p2, and p3, this space consists
of {pl+p2, pl+p3, p2+p3}. Here, each element contains the amino acid sequence of
each unique peptide combination. The next step is to arrange these elements in such a
way that they are approximately sorted by mass. This can be done without computing
the mass of each peptide combination by noting that the number of amino acids in a
peptide is directly proportional to its mass. Based on this idea, we store the DMS in a
hash table with its key the number of amino acids in the peptide combination. Next
the elements of the PML must be converted to an equivalent number of amino acids in
order to index into the DMS for matches. This can be done by use of the expected
match index, as defined below:

Definition 1. The Expected Match Index i, is defined as the number used to index into
a sorted or approximately sorted data structure to arrive at the region where a match is
likely to be found. The match index is constructed for mass tables that represent
strings of amino acids a by i, = my/m,. , where mj is a value from a mass list and m, is
the expected amino acid mass. We defined the expected amino acid mass in [23] as
the weighted mean of all 20 amino acids, i.e, m, = Y ;w;m(a;), where {w;}denotes the
relative abundance of each amino acid, and m(a;) is the mass of an amino acid residue.
Using published values for masses and relative abundances of each amino acid [24],
we obtain m, = 111.17 Da, with a weighted standard deviation of ¢, = 28.86 Da.

For each member of the PML, an index is calculated by dividing the member by i,.
These indices are then used to access the corresponding buckets in the hash table. Fi-
nally, the mass of each peptide pair in a bucket is computed and compared with the
corresponding peak value to determine a match. Because only the disulfide bonded
peptide configurations that are indexed have their masses computed, we call this tech-
nique generative indexing. As discussed earlier, the construction of the mass space
requires O(K”) time, where k is the number of cysteine-containing peptides following
proteolytic digestion, and p is the maximum number of peptides in a disulfide bonded
peptide structure. Thus the overall time complexity of this step is O(kX*+IDMSI+IPMLI).
In nature, p greater than 3 are rarely observed, and p greater than 5 has not been re-
ported to our knowledge. Consequently the effective complexity of this step is cubic.

3.1.2 Determining the Confirmed Match

Consider a peptide with intrabonded cysteines. For the general case, the total number
of y- and b-ions combined is a constant and depends only on the number of amino
acid residues in the peptide, denoted lipll. Thus, the construction of the disulfide
bonded fragment mass space for this case requires O(lIpll) time. We note that the
expected match index can be used to improve on this time complexity by only consid-
ering those elements that are likely to match an element of the TML. For an inter-
bonded pair of peptides, let pl denote a peptide with its set of possible y-ions denoted
y1 and b-ions denoted b1, and y2 and b2 denotes the y-ions and b-ions for peptide p2.
Since pl and p2 are in a disulfide bond, four types of fragments may occur: yl+y2,
yl+b2, bl+yl, and b1+b2. A simple way to compute and display the FMS is to gen-
erate four tables based on these four types of fragment combinations. Then, for this
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MS/MS mass table the mass of any element T[i, j] equals m(i) + m(j) - 2 Da. If the
two peptides consist of llplll and llp2Il amino acid residues, respectively, the total
number of elements to compute is (llplll+1)( lip2ll+1). If the ions used to form the
mass tables are arranged in order of increasing number of amino acids, the matrices
will be sorted. Again, the expected match index can be used to generate only those
elements that are likely to match an element of the TML. These elements correspond
to a diagonal region in a mass table. This leads to a time complexity to search for a
match of O (lipll), if llp1ll = lIp2ll. The extension of this analysis to construct the FMS
for a n- peptide disulfide bonded structure is now straightforward. The FMS for a n-
peptide structure consists of 2" n-dimensional sorted tables. Given an expected match
index value, the region where matches are likely to be found has n-1 dimensions.
Thus, the time complexity to determine a match with an element of the TML is O(2"
liplI™"). Based on the previous discussion on the number of fragments that have been
observed in the disulfide bonded peptide structure, the effective complexity reduces to
cubic.

3.1.3 Aggregating Results to Compute the Overall Disulfide Bond Pattern

The output of the previous step is a collection of confirmed matches between pairs of
cysteines. Let the confirmed match CM,;, denote a match obtained from a disulfide
bonded peptide structure with cysteines C, and C,. To convert each CM,,, into a
single number that is assigned to the weight of an edge between the pair, we apply the
notion of the match ratio r, which is defined as the number of matches divided by the
size of the tandem mass spectrum, i.e. r = |CMI/ITMLI. To compute the overall disul-
fide connectivity, we construct a weighted graph G where each vertex represents a
cysteine residue in the protein. If there is a match ratio r ., that is greater than 50%,
this number is assigned to the weight of the edge between vertex a and vertex b. Thus
each edge represents a Confirmed Match for a disulfide bond between a pair of cys-
teine residues. Subsequently, the maximal weight matching problem is solved on this
graph (using the algorithm by Gabow [25]) to obtain the overall disulfide-bond topol-
ogy. The complexity of this step is O(ICF). This leads to an overall cubic complexity
for our method, which we call MS2DB.

4 Experimental Evaluation

The data used in experiments consisted of the primary sequences (obtained from the
Swiss-Prot database [24]) and the DTA files obtained from LC/MS/MS analysis using
an LCQ ion trap mass spectrometer (Finnigan, San Jose, CA) for nine eukaryotic
Glycosyltransferases with varying numbers of cysteines and disulfide bonds. For
each protein, all DTA files are used collectively from an LC run. The proposed
method was used with the following parameters: bond mass tolerance bm, = 3.0 Da,
maximum peak width p,, = 2 Da, threshold t = 2% of the maximum intensity, and the
limit 1 = 50 peaks. Further, the MS/MS mass tolerance was set to fm, = 1.0 Da, except
when intramolecular bonded cysteines were identified, when a value of 1.5 Da was
used. The protease was set to what was used in the actual experiment(s). The number
of missed cleavages allowed was set to m,,,= 1. Three different sets of experiments
were performed. In the first experiment the gains in efficiency that are achieved by
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utilizing the generative indexing technique were experimentally studied. In the sec-
ond experiment, the proposed method was compared with MS2Assign [26], which is
a mass spectrometry-based method for determining cross-linkages. In the final ex-
periment, a detailed comparative study was conducted where the disulfide connec-
tivity determination capabilities of the proposed mass spectrometry-based method was
compared with three well established methods using the model-and-predict methodol-
ogy, namely DiANNA [7], DISULFIND [27], and PreCys [28]. The results from each
of the methods were analyzed in terms of well established statistical metrics of sensi-
tivity, specificity, accuracy, and Matthew’s correlation coefficient.

4.1 Experimental Analysis of the Proposed Approach

To quantify the gains in efficiency achieved by utilizing the generative indexing tech-
nique, the fraction of the MS mass space that was actually searched for each of the
Glycosyltransferases was determined. For this, the number of mass computations was
tracked and divided by the total number of entries in the hash table (i.e. the MS mass
space). Fig. 1 (left plot) shows the results obtained. It may be noted that the fraction
of the mass space that had to be searched decreased as the number of precursor ions
increased, thus underlining the effectiveness of the proposed search strategy. For data
obtained after the tandem mass spectrometry step, the efficiency gain was measured
by dividing the number of mass computations made by the size of the MS/MS mass
space, which is essentially the size of the four tables of b- and y-ion combinations.
Fig. 1 (right plot) shows that while a larger fraction of the mass space is accessed by a
MS/MS mass peak, a saturation level of about 50% is rapidly achieved. This is be-
cause the proposed approach saves mass table entries across searches so that the same
element is not recomputed.

In order to quantify the ability of the proposed method to efficiently determine the
overall bonding pattern, we first must determine the size of the solution space from
which the disulfide bond pattern has to be identified. In Table 1, the first column
shows the size of this space if there is no knowledge as to whether any one cysteine is
bonded with any other. In other words, the cysteine graph for this protein is fully
connected. The second column shows the number of possible patterns that are ob-
tained if all edges with match ratios less than .50 are removed in the cysteine graph.
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Fig. 1. Experimental analysis of the proposed indexing-based search strategy. The generative
indexing approach results in the computation/search of only a fraction of the theoretical mass
space.
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Table 1. Effectiveness of the proposed approach in reducing the number of disulfide bond
patterns that need to be considered for determining the final connectivity

Protein Number of theoretically possi- | Number of theoretically possible
ble disulfide bond patterns from | disulfide bond patterns from cysteine
fully connected cysteine graph graph with edges for match ratios

exceeding 0.50

C2GnT-1 945 67

ST8Sia IV 15 4

FT VII 15 11

Lysozyme 105 61

Lactoglobulin 15 2

FT Il 15 10

B1,4-GalT 61 s

Aldolase 124 2

Aspa 124 1

4.2 Comparison with MS2Assign

To compare the proposed method with MS2Assign we identified the DTA files that
were used to obtain match ratios for C13 to C59 (true positive identification) and
C199 to C413 (false positive identification) of C2GnT-I. The fragment ion m/z por-
tions of the file were then copied to use for the Peak List in MS2Assign. In the true
positive identification case, for MS2Assign, the number of matches obtained was
1646 out of 1774 peaks input, giving a match ratio of 0.93. For our method, the cor-
responding number of matches was 48 out of 50 peaks, giving a match ratio of 0.96.
In the false positive identification case, for MS2Assign, the number of matches we
obtained was 1791 out of 2169 peaks, giving a match ratio of 0.78, while for our
method, the number of matches we obtained was 44 out of 50 peaks, giving a match
ratio of 0.72. While preliminary, the results from this study seem to indicate that the
accuracy of the proposed approach is indistinguishable from MS2Asssign (the pro-
posed approach performs marginally better in recognizing true positives and scores
false positives lower than MS2Assign). However, it should be noted that unlike
MS2Assign, the proposed method is fully automated; in MS2Assign the DTA files
have to be manually analyzed to identify the mass spectrum and retain the mass val-
ues (MS2Assign does not provide such parsing functionality).

4.3 Comparison with Predictive Methods

In this experiment the proposed mass spectrometry-based method was compared with
three predictive methods (DiIANNA [7], DISULFIND [27], and PreCys [28]) and the
results extensively analyzed. The disulfide bonding pattern determined using each
method is shown in Table 2. It may be noted that across the entire dataset, using the
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Table 2. Dataset and comparison of MS2DB with some prediction servers. The first column
displays the name (or abbreviation) of the protein, followed by its Swiss-Prot accession num-
ber. Column 3 lists the experimentally determined disulfide bond pattern of each protein. For
example for protein C2GnT-I, eight cysteines are engaged in four disulfide bonds, while the
remaining three are unbonded. One of these bonds is between the cysteine at amino acid posi-
tion 59 and the cysteine at amino acid position 413. Columns 4 to 6 show the results for three
prediction servers, given the primary sequence of each protein as input. Note that DISULFIND
does not support the prediction of proteins with more than 10 cysteines.

Protein (Swiss- | Number of | Disulfide DiANNA 1.1 DISULFIND PreCys MS2DB
Prot ID #) Cysteines Bond
Structure
C2GnT-1 11 C59-C413 C13-C172, Not supported C59-C381 C59-C413
(Q09324) C100-C172 C59-C217, C100-C372 C100-C172
C151-C199 C151-C234, C151-C172 C151-C199
C372-C381 C199-C372, C199-C413 C372-C381
C13, C217, | C381-C413 C13, C217,
C234 free C234 free
ST8Sia v | 6 C142-C292 C11-C156, all free C142-C356 C142-C292
(Q92187) C156-C356 C142-C292, C156-C292 C156-C356
Cl1, Cl169 | C169-C356 Cl1, Cl169
free free
FT VII | 6 C68-C76 C68-C321, C76-C318 C68-C76 C68-C76
(Q11130) C211-C214 C76-C211, C211-C214 C211-C214
C318-C321 C214-C318 C318-C321 C318-C321
Lysozyme 9 C24-C145 C24-C145, C24-C145 C82-C145 C24-C145
(P00698) C48-C143 C48-C133, C48-C133 C48-C143
C82-C98 C82-C98, C94- | C82-C98 C10, C82,
C94-C112 Cl12 C94-C112 C94, C98,
C10 free Cl12
free
Lactoglobulin 7 C82-Cl126 C12-C137, all free all free C82-C126
(P02754) C3, C12, | C82-C176, C3, Cl12,
C135, C137, | C126-C135 C135, C137,
C176 free C176 free
FTIII 7 C81-C338 C16-C91, C81- | none C81-C91 C81-C338
C91-C341, Cl143, Cl129- C91-C341
Cl6, Cl129, | C338
C143 free
B1,4-GalT 7 C134-C176 C23-C176, none C134-C247 C134-C176
C247-C266 C30-C144, C176-C266 C247-C266
C23, (30, | C266-C341
C342 free
Aldolase 8 C73, Cl135, | C73-C339, none none none
Cl115, C178, | C135-C290,
€202, C240, | C115-C240,
€290, C339 | C178-C202
free
Aspa 8 C4, C60, | C4-C275, none none C145-C349
C66, Cl123, | C60-C217,
Cl145, Cl151, | C66-C151,
C217, C275 | Cl123-Cl145
free
0O, 0.0 0.0 0.22 0.78

proposed method a Q, score (representing the fraction of molecules with disulfide
bonds correctly identified) of 0.89 was obtained. While DIANNA, DISULFIND, and
PreCys are known to perform well on the SP39 dataset, their performance on these
nine Glycosyltransferases was significantly inferior.
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To further analyze these results, we created connectivity tables for all of the proteins
that we studied in a manner similar to what is shown in Table 2. Table 3 is one of the
connectivity tables we created. Subsequently the four commonly used metrics of sensi-
tivity, specificity, accuracy, and Matthew’s correlation coefficient were calculated.

These four metrics are defined as:

e  Sensitivity = TP/(TP+FN)

e  Specificity = TN/(TN+FP)

e  Accuracy = (TP+TN)/(TP+FP+TN+FN)
e  Matthew’s correlation coefficient =

TPXTN — FPx FN
J(TP+ FN)(TP + FP)(TN + FP)(TN + FN)

In the above formulae the following abbreviations are used: TP (true positive),
TN(true negative), FP (false positive), and FN (false negative). In seven out of the
nine cases, the metrics for the proposed mass spectrometry-based method were supe-
rior those of the predictive methods. However, the proposed method had difficulty
with Lysozyme, where two disulfide bonds were observed to occur in a complex
topology with one inter-peptide bond sandwiched by cysteines participating in an
intra-peptide bond. Currently, MS-based methodologies lack the resolution to disam-
biguate such patterns. Interestingly however, the predictive methods all performed
well for this case. It should also be noted that in practice, researchers consider false
negative results to have a more deleterious effect on protein characterization than
false positive results. Our results, summarized in Table 4, show that MS2DB gener-
ates fewer false negative results than the prediction servers we considered.

Table 3. Connectivity table summarizing validation testing results for two proteins. Below
diagonal: f1,4-GalT. Above diagonal: Lactoglobulin. The experimentally determined disulfide
bond pattern is shaded in gray. The diagonal is shaded black. Only match ratios greater than
0.5 are included into the table.

3 12 | 82 | 122 | 135 | 137 | 176 | Cysteine
location
TN|TN |TN | TN | TN | TN |3

TN | TN | TN | TN | TN | 12

TN | TN | TN . 82

23
30

134 71
FP

176 .62 TN | TN | TN | 122
FP

247 TN | TN TN | TN | 135

266 TN | TN TN

FP
342 TN | TN | .64 | TN
FP
Cysteine | 23 | 30 | 134 | 176
location
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Table 4. Overall performance results, shown as a collection of sub-tables, one for each protein.
The results for the protein C2GnT-I using DIANNA are not reported as proteins with > 10
cysteines are not supported. A zero in the denominator of the performance metric results in it

having a value of Undefined.

C2GnT-1I TP TN FpP FN Accuracy | Sensitivity | Specificity | Matthew's Corr. Coeff.
DiANNA 0 46 5 4 0.84 0 0.9 -0.09

DISULFIND > 10 cys

PreCys 0 47 4 4 0.85 0 0.92 -0.08

MS2DB 4 45 6 0 0.89 1 0.88 0.59

Lysozyme TP TN FP FN Accuracy | Sensitivity | Specificity | Matthew's Corr. Coeff.
DiANNA 3 31 1 1 0.94 0.75 0.97 0.72

DISULFIND 4 32 0 0 1 1 1 1

PreCys 1 32 0 3 0.92 0.25 1 0.48

MS2DB 2 23 9 2 0.69 0.5 0.72 0.15

Aldol TP TN FP FN Accuracy | Sensitivity | Specificity | Matthew's Corr. Coeff.
DiANNA 0 24 4 0 0.86 ? 0.86 ?

DISULFIND 0 28 0 0 1 ? 1 ?

PreCys 0 28 0 0 1 ? 1 ?

MS2DB 0 27 1 0 0.96 ? 0.96 ?

ASPA TP TN FP FN Accuracy | Sensitivity | Specificity | Matthew's Corr. Coeff.
DiANNA 0 24 4 0 0.86 ? 0.86 ?

DISULFIND 0 28 0 0 1 ? 1 ?

PreCys 0 28 0 0 1 ? 1 ?

MS2DB 0 28 0 0 1 ? 1 ?

ST8Sia IV TP TN FP FN Accuracy | Sensitivity | Specificity | Matthew's Corr. Coeff.
DiANNA 0 9 3 3 0.6 0 0.75 -0.25

DISULFIND 0 13 0 2 0.87 0 1 ?

PreCys 0 11 2 2 0.73 0 0.85 -0.15

MS2DB 2 13 0 0 1 1 1 1

FucT VII TP TN FP FN Accuracy | Sensitivity | Specificity | Matthew's Corr. Coeff.
DiANNA 0 9 3 3 0.6 0 0.75 -0.25

DISULFIND 0 11 1 3 0.73 0 0.92 -0.13

PreCys 3 12 0 0 1 1 1 1

MS2DB 3 12 0 0 1 1 1 1

Lactoglobulin | TP TN FP FN Accuracy | Sensitivity | Specificity | Matthew's Corr. Coeff.
DiANNA 0 17 3 1 0.81 0 0.85 -0.09

DISULFIND 0 20 0 1 0.95 0 1 ?

PreCys 0 20 0 1 0.95 0 1 ?

MS2DB 1 20 0 0 1 1 1 1

FT III TP TN FP FN Accuracy | Sensitivity | Specificity | Matthew's Corr. Coeff.
DiANNA 1 17 2 1 0.86 0.5 0.89 0.33

DISULFIND 0 19 0 2 0.9 0 1 ?

PreCys 0 19 1 1 0.9 0 0.95 -0.05

MS2DB 4 16 1 0 0.95 1 0.94 0.87

b1,4-GalT TP TN FP FN Accuracy | Sensitivity | Specificity | Matthew's Corr. Coeff.
DiANNA 1 17 2 1 0.86 0.5 0.89 0.33

DISULFIND 0 19 0 2 0.9 0 1 ?

PreCys 0 17 2 2 0.81 0 0.89 -0.11

MS2DB 2 15 4 0 0.81 1 0.79 0.51

5 Conclusions

In this paper we have presented a comparative analysis of disulfide bond determina-
tion using computational-predictive and mass spectrometry-based methods. The pro-
posed mass spectrometry-based method seeks to efficiently search the combinatorial
space of possible peptide fragments and find high-quality correspondences with
measurements from tandem mass spectra. Subsequently, the correspondence scores
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(match ratios) are used to solve a maximal weight matching problem to obtain a
globally optimal disulfide bond assignment. This approach contrasts significantly
from the core philosophy of computational predictive methods, where the challenge
lies in determining the optimal machine learning algorithm, the features to be used,
and selection of the training data set. The experimental results show that in general,
the direct measurement philosophy underlying mass spectrometry-based methods
can outperform the model-and-predict method. At the same time, specificities of
protease-dependent digestion combined with specificities of collision-based frag-
mentation imply that certain bonding topologies can be more reliably discerned
using prediction-based methods. To the best of our knowledge, the comparative
investigations presented in this paper (and the underlying questions researched) are
unique at the current state-of-the-art. We believe that these results provide important
cues for future development of both computational-predictive methods as well as
mass spectrometry-based algorithmic techniques.
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