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Abstract. Time series microarray analysis provides an invaluable insight into 
the genetic progression of biological processes, such as pregnancy and disease. 
Many algorithms and systems exist to meet the challenge of extracting knowl-
edge from the resultant data sets, but traditional methods limit user interaction, 
and depend heavily on statistical, black box techniques. In this paper we present 
a new design philosophy based on increased human computer synergy to over-
come these limitations, and facilitate an improved analysis experience. We pre-
sent an implementation of this philosophy, XMAS (eXperiential Microarray 
Analysis System) which supports a new kind of “sit forward” analysis through 
visual interaction and interoperable operators. Domain knowledge, (such as 
pathway information) is integrated directly into the system to aid users in their 
analysis. In contrast to the “sit back”, algorithmic approach of traditional sys-
tems, XMAS emphasizes interaction and the power, and knowledge transfer po-
tential of facilitating an analysis in which the user directly experiences the data. 
Evaluation demonstrates the significance and necessity of such a philosophy 
and approach, proving the efficacy of XMAS not only as tool for validation  
and sense making, but also as an unparalleled source of serendipitous results. 
Finally, one can download XMAS at http://cose-stor.sfsu.edu/~huiyang/ 
xmas_website/xmas.html 

1   Introduction 

Microarray-based experimentation is a technique, which measures the expression lev-
els for hundreds and thousands of genes within a tissue or cell simultaneously. It 
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therefore provides a data rich environment to obtain a systemic understanding of vari-
ous biochemical processes and their interactions. Data from microarray experiments 
have been used, among others, to infer probable functions of known or newly discov-
ered genes based on similarities in expression patterns with genes of known function-
ality, reveal new expression patterns of genes across gene families, and even uncover 
entirely new categories of genes [1], [2]. In more applied settings, microarray data has 
provided biologist with ways of identifying genes that are implicated in various dis-
eases through the comparison of expression patterns in diseased and healthy tissues. 

The area of microarray data analysis remains particularly active, leading to the de-
velopment of numerous algorithms and software tools. The algorithmic underpinnings 
of these methods span a variety of pattern analysis, machine learning, and data mining 
methodologies including Bayesian belief networks (BBN), clustering, support vector 
machines (SVM), neural networks and Hidden Markov models. A survey of many of 
these techniques can be found in [1], [3], [4] and [5]. From a user perspective, a num-
ber of vendors have developed software systems for microarray data analysis such as 
Ingenuity [6], Onto-Express [7] and GenMAPP [8]. Furthermore, plug-ins have been 
developed for existing software systems such as the BioConductor [9] package for R 
[10], along with SAM [11] and PAM [12] for Excel. 

Despite this un-arguable richness of analysis tools, it is acknowledged however, 
that analysis of microarray data is currently at a bottleneck [13]. Some of the most 
fundamental reasons behind this include: 

• Emphasis on the algorithmics to the exclusion of the user: Holistically taken, most 
microarray analysis implementations are algorithm-oriented and do not provide 
sufficient support for exploration and/or hypotheses formulation. From an end user 
perspective, they function as a “black box” giving users very limited control over 
the analysis process outside what the underlying algorithmic mechanism is in-
tended for. Among others, this limits the ability of users to integrate their domain 
expertise into the analysis process or explore alternatives which the algorithm de-
sign had not foreseen. 

• Interpretability: Methods involving complex algorithms (such as BBN, SVM, and 
dimensionality reduction) may produce results that are difficult to interpret or un-
derstand. This can create a disconnect between the algorithmic process and the bio-
chemical interpretability of the information. 

• Biased statistical analysis: An important challenge outside the aforementioned 
user-centric issues lies in the fact that many existing techniques (e.g., SAM and 
PAM) employ statistical approaches to analyze microarray data. This can lead to 
bias, since in the majority of microarray studies the data is under-constrained (there 
are far fewer samples than genes or probes of interest). A representative example is 
the dataset used in this paper. It studies the placenta over the duration of pregnancy 
and is composed of just 36 samples containing expression levels for over 40,000 
probes.  As a result, it is difficult to construct reliable statistical samples or assume 
a reasonable data distribution model to carry out further analysis. 

Given the aforementioned context, we propose re-thinking the design philosophy 
for developing microarray data analysis systems. Our central observation notes the 
fact that computers are inherently strong at large scale processing, data storage and 
data integration. However they lack the human skills of contextual reasoning, pattern 
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detection, hypotheses formulation, exploratory behaviors, and sense making. Thus the 
primary design goal we seek to establish is the ability to exploit human-machine syn-
ergy by taking advantage of the aforementioned complementarities. 

In the area of human-computer interactions, such an emphasis on exploration and 
hypothesis formulation in data rich environments has been the focus of study in [14] 
and [15], where the term “experiential environment” was used to denote systems and 
interfaces that take advantage of the human-machine synergy and allow users to use 
their senses and directly interact with the data. 

In this paper, we describe the anatomy of a microarray data analysis system called 
XMAS (eXperiential Microarray Analysis System) that is developed by using and 
extending the ideas of experiential computing. The proposed system is (1) direct in 
that it does not use complex metaphors and commands; (2) supports unified query and 
presentation spaces; (3) maintains user context; (4) provides external contextual in-
formation through assimilating a variety of supplementary data such as pathway data 
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) [16], and (5) supports 
algorithmic and user-directed analysis, exploration and hypotheses formulation. Our 
ultimate goal is to promote perceptual analysis by integrating the user directly in an 
interactive and reflexive visualization environment with powerful algorithmic capa-
bilities. XMAS is not limited to the analysis of time series microarray data, and can be 
more widely applied to any time-series datasets. XMAS supports the following visu-
alization and analyses: 

• Trajectory based gene clustering: In time series microarray data, a trajectory is 
composed of a sequence of expression measurements collected at different time 
points for a certain probe or gene. It is essentially a time series of gene expression 
data w.r.t. a single probe or gene.  This function clusters different genes according 
to the relative geometric similarity of their expression trajectories. 

• Data filtering: This can be based on gene identifiers, pathways, and integrated or 
user defined annotations. These filters facilitate the specification of genes of inter-
est, enabling the user to narrow down hypotheses. This functionality extends to 
support any integrated secondary data. 

• Interestingness evaluators: XMAS implements a set of measurements such as 
Pearson’s correlation and p-value to quantify the interestingness of the results, to 
aid the user during visual inspection and more generally the entire analysis process. 

• Visualizations: Two primary visualizations provide interactive representations of 
data at different resolutions including (1) a discretized trajectory view; and (2) a 
precise gene expression view. 

• Interactions: Users can directly manipulate, interact and explore the data using 
highly intuitive point-and-click interactions. 

There exist systems which support some of the features described above. For ex-
ample the commercial system OmniViz [17] offers various reflective and interactive 
visualizations in addition to the more traditional statistical measures and algorithmic 
capabilities. Systems which share this closer resemblance to XMAS lack the core ex-
periential design philosophy, which in turn has a significant influence over the com-
pleted system in the following areas: interaction, visualization, data integration, and 
interoperability. This will become apparent through the remainder of the paper. 
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Through use of XMAS, users are expected to achieve three main goals: (1) to gain 
a deeper understanding of a time series microarray dataset; (2) to verify or compare 
phenomena reported in literature on comparable datasets; (3) to generate hypotheses 
through examining results from different analyses. The main contributions of this 
work include: (1) increased user involvement, comprehension and understanding 
through development of a new design philosophy for microarray data analysis; (2) 
improved biological results from analysis; and (3) a concrete web-based extensible 
implementation of this design philosophy. This paper goes on to describe XMAS; its 
fundamental components and associated combinatorial power in Section 2. In Section 
3 experimental results and user evaluation are presented to demonstrate the efficacy 
of this approach. 

2   System Description 

XMAS is an experiential system for time series microarray data (TSMAD) analysis 
through realizing a collection of interactive visual data operators and assimilating 
different types of knowledge such as pathway information. As shown in Fig. 1, 
XMAS consists of the following main modules: (1) data preprocessing;  (2) a collec-
tion of interoperable data operators, including a parameterized discretization operator, 
basic data integration operators, and trajectory-oriented data operators; (3) interest-
ingness evaluators; and (4) visualization and Human Computer Interaction (HCI). 
Next, we first discuss the datasets utilized by XMAS, and then describe in detail its 
main modules. 

2.1   Data Sets 

XMAS focuses on the analysis of time series microarray data. Such data has been 
used to study the developmental nature of an organ (e.g., a cancerous tissue) by con-
ducting Microarray experiments on samples drawn from this organ over time. The  
 

 

Fig. 1. System overview of XMAS 
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genes of interest are generally specific to a study, which in turn determines the set of 
probes on a microarray chip that one is interested in looking into. 

Let D be a TSMAD, P={p1, p2, .., pM} be the set of M probes of interest, T=<t1, 
t2, .., tQ> be the ordered Q time points when Microarray analyses are conducted, 
and Si={ s1, s2, .., sNi } be the set of Ni samples at time ti∈T. Note that Si and Sj (i≠j) 
might be two different sets due to restrictions on acquisition of live tissues. Then D 
can be considered as a dataset of M time series, each of which corresponds to one 
probe and is referred to as a complex probe trajectory. For each probe pk∈P, its 
trajectory has Q time points. Each time point is associated with a vector of Ni ex-
pression values, corresponding to the Ni samples at this point. To further enhance 
users’ explorative power, and analysis experience, XMAS integrates a variety of 
existing domain knowledge such as a mapping database between the probe set P 
and the set of genes, and pathway data from KEGG. XMAS adopts MySQL, an 
open source RDMBS, to manage such data. 

2.2   Data Preprocessing 

Given a TSMAD D, this module first performs a base-2 logarithmic transformation 
over each expression value in D.  It then applies a simple data reduction technique to 
reduce each complex probe trajectory to a simple time series. Specifically, for a given 
complex trajectory, it replaces the vector of expression values at each time point by 
the median of this vector. One main reason the median is chosen is that it is more 
noise-tolerant.  For the remainder of this paper, we refer to such simple time series as 
simple probe trajectories or probe trajectories. This process simplifies analysis at a 
global level, where the median expression is a reasonable representation of the con-
stituent samples. Complete expression levels are preserved within XMAS and are 
accessible to aid in more concentrated analysis. 

2.3   Interoperable Data Operators, Visualization and HCI 

Interoperable data operators, intuitive visualization, and user-friendly HCI support 
form the core of XMAS. XMAS consists of data operators that can both function in-
dividually and collaborate with others when combined at users’ command. Unlike 
most existing software systems for Microarray data analysis, XMAS injects visualiza-
tion and HCI into data analysis. Therefore, users can not only visually observe the 
results at any moment, but also be able to interactively respond to XMAS to design 
their own explorative paths towards concept validation or hypothesis generation. It is 
due to this tight coupling of data operators, visualization and HCI, we will describe 
each data operator by also including the other two aspects.  

Parameterized data discretization: One main interest in studying TSMADs is to 
characterize the temporal movement of genes in terms of expression level. Given that 
the collection of genes under study can be large, for instance, in the order of tens of 
thousands, examining a dataset on a trajectory-by-trajectory basis is time consuming 
and difficult. In addition, one also needs to reduce the impact from noise in the data. 
To address such issues, XMAS first applies equi-width discretization to each probe 
contained within the preprocessed TSMAD, where the width w (applied globally) is a 
user-specified parameter. The result of this intuitive probe association operator is a 
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collection of discretized probe trajectories, where each expression level is represented 
by an integer, corresponding to its discretized value. The issue of information loss 
inherent to such discretization is countered through the preservation of the precise 
expression values which can be exposed through visualization or inspection. 

Fig. 2 shows part of a screenshot of such discretized trajectories. In this figure, 
each discretized value (or bin) occupies one row space. Small squares or nodes in 
each bin can be clicked to reveal all the probes whose expression levels fall into this 
bin at a give time point. Moreover, all the nodes are arranged from left to right in col-
umns, with the ith column corresponding to the ith time point. A node is colored in red 
if its expression level is higher than the previous node on a trajectory and blue if it is 
lower. The probes in the first node in a row share discretized expression value at the 
first time point. The probes in each of the rightmost nodes share identical discretized 
trajectories. And the probes in each of the middle nodes share a partial trajectory prior  
 

 

Fig. 2. The XMAS analysis environment is divided into three primary regions: (1) the visuali-
zation space displays discretized or precise trajectory views. Visualizations in this space can be 
manipulated in a similar way to various interactive web based mapping applications. This ac-
commodates larger visualizations than would be practical in a static environment. Each node in 
the primary visualization is interactive, allowing the user to inspect content through in-place 
context windows (2). A complementary view, the visualization sidebar (3), provides similar 
data for the entire visualization. Operator specification tools in addition to operator summaries 
and correlation data are also accessible from this space. 



22 B. Dalziel et al. 

to that time point. All such nodes are expandable. Note that the system calls several 
operators described later to construct those nodes. 

Basic data integration operators: The operators contained within this category 
realize integration of different datasets. They can be categorized as follows:   

• Gene-probe integrators: These operators relate probes to genes or vice versa, for 
instance, identifying the list of probes associated with a given gene.    

• Probe-gene-pathway integrators: This set of operators enriches a gene or probe 
with pathway information. For instance, one such operator determines whether a 
given gene participates in a pathway; whereas another operator lists all the genes or 
probes that are involved in a pathway. 

• Trajectory-trajectory integrators: These operators relate the three forms of probe 
trajectories utilized by XMAS: complex, simple and discretized probe trajectories. 

Trajectory-oriented data operators: This set of operators support users to ex-
plore the data by examining and uncovering the similarity among probe trajectories. 

• K-means clustering: This operator puts probes of similar, non discretized trajecto-
ries into the same group. The user can choose to cluster based on either Euclidian 
or Pearson’s Correlation distance metrics and can specify the value of K. 

• Expression level preserving trajectory-based clustering: This operator identifies 
the genes whose discretized probe trajectories are identical and associates them in a 
single cluster. Two trajectories are identical if they have the same expression level 
at each time point. Fig. 2 shows examples of such clusters, each corresponding to 
one trajectory. One can inspect the probes and related contextual information in a 
cluster by clicking the corresponding node. 

• Trajectory shape based clustering: This operator finds similar shaped trajectories 
across possibly different expression values. Probes of the same trajectory shape are 
essentially co-expressed at each time point. Therefore, each of such clusters identi-
fies one co-expression pattern. We implement this operator in two steps. It first 
vertically translates all the discretized probe trajectories in a way such that the first 
node of each trajectory corresponds to the same expression level 0. For instance, 
for a given trajectory <2, 3, 1, 3, 4>, its translated trajectory is <0, 1, -1, 2>.  The 
second step finds such clusters by calling the previous clustering operator.  Fig. 3 
shows part of a screenshot of such clusters. One can view the content of each clus-
ter by expanding each of the rightmost nodes. 

 

Fig. 3. Trajectory shape based clustering translates trajectories to a common root. Each node is 
interactive, revealing contextual data about the content of the node as a mobile, in-place win-
dow in the visualization. 
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Fig. 4. Shape based trajectory specification, reveals 2 clusters of inverse trajectory shape 

• Discovery of inversely expressed probes/genes: This operator identifies probes 
whose discretized trajectories are the inverse of each other. Fig. 4 shows the inter-
active query space and corresponding visualization showing five probes expressing 
with perfect discretized inverse correlation to twelve others. 

• Filtering operators: Such operators utilize one or more basic data integration op-
erators described earlier to identify trajectories that satisfy certain specified crite-
ria. All such operators are integrated into one interactive user interface as shown in 
Fig. 2. XMAS currently supports the following filtering operators: 
• Filtering by probes or genes: This identifies probe trajectories associated with 

one or more specified genes. 
• Filtering by pathway: This identifies probes involved in a specified pathway 
• Filtering by gene expression movement: This identifies probes that are partially 

or entirely co-expressed. Fig. 4 illustrates the interface where users can specify a 
specific co-expression pattern of interest. This filtering operator can be applied 
to strictly trajectory-based clusters, or trajectory shape based clusters, as illus-
trated in Figs. 2 and 4 respectively. In Fig. 2, a user is interested in identifying 
all the probes or genes with a relative movement of 2 between the last two dis-
cretized expression levels.  Fig. 4 illustrates the ability to include all the in-
versely expressed genes, this time for shape based clusters (i.e. with the same 
root).  A similar operator is also included where one can identify the probes that 
have a similar expression level at one or more time points by specifying the 
range of expression levels at such time points. 

• Exclude a probe from the resulted probe set: This operator removes a probe 
from analysis. In Fig. 3, one can remove a probe by clicking the ‘x’ symbol. 

Note that all the above data operators are interoperable with each other. This is es-
sential, as XMAS does not prescribe data discovery paths for users. Instead, it em-
powers users to construct their own discovery paths by combining different operators 
in different order. XMAS achieves this by accommodating an integrated user inter-
face shown in Fig. 2. 

2.4   Interestingness Evaluators 

Although visualization is powerful and intuitive for users to gain insight into a data-
set, its effectiveness can be greatly reduced in a variety of situations. For instance, the 
amount of the data being visualized is too large to fit into a computer screen. In some 
cases, data might exhibit an inherently complex structure such that it is difficult for 
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human beings to make sense of the visualized data. To overcome this limitation, 
XMAS includes a collection of evaluators to quantify the results.   

• Volatility of a trajectory: Let TR=<e1, e2, …, eQ> represent a discretized trajectory, 
where ei is the expression value at the ith time point. The volatility of this trajectory 

is defined as Σi=1,Q-1(│ei-ei-1│). One can use this measure to identify probes with 
extremely low or high volatility, where the former might not be of much interest 
and the latter might be a result of noise in the dataset. 

• Precision and recall: These two measurements are used to quantify the strength of 
association between a pathway and the set of probes produced by a data operator. 
Let P be the pathway of interest and x be the number of participating probes of P.  
Let y be the number of probes returned by a certain operator, among which z 
probes are associated with P. Then Precision=z/y and Recall=z/x. 

• Pearson's correlation coefficient:  Let X=<x1, x2, …, xQ> and Y=<y1, y2, …, yQ> 
be two probe trajectories. One can use this evaluator to measure the direction and 
strength of the linear relationship between X and Y. 

• Identification of differentially expressed genes (DEGs): DEGs are selected by  
determining the moderated t statistic-adjusted P values (<0.05 using Bonferroni 
correction [18]). Fig. 2 highlights the DEGs within the current analysis, as leaf an-
notations in the primary visualization (1), and as “tags” in the list view (3). 

P-value: We adopt P-values to measure the statistical and biological significance of 
observing a set of probes being associated with each other by a clustering operator 
described earlier. Given a background distribution, the lower the p-value, the more 
unlikely that observing a set of probes associated with each other is by chance. We 
next use the pathway annotation as an example to explain how P-values are com-
puted. Let N be the number of probes under study, D be the number of probes in a 
given pathway, n out of these N probes are associated with each other by a data opera-
tor, and finally, k out of these n probes are also in the said pathway. The P-value of 

this association of n probes is then defined as: 
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2.5   Interoperability, Interactivity and Extensibility of XMAS 

Interoperability among data operators: Unlike most existing software tools for 
TSMADs, XMAS does not prescribe analytical tasks for users. Instead, it empowers 
users to construct their own data discovery paths tailored for their special needs by 
combining different operators in different orders. XMAS achieves this by realizing 
interoperable data operators and an integrative user interface shown in Fig. 2. Aided 
by visualization, users can use this interface to select a sequence of data operators that 
are most likely to maximize their understanding of a problem at hand. A use case is 
described in detail in section 3 to illustrate this feature and its advantages. 

Interactivity: Interactions with operators in XMAS are direct, i.e., no complex meta-
phors are involved. In addition, XMAS maintains contextual information on both  
users’ behavior and data produced from such behavior. This ensures that there is no 
unnecessary context switching, thereby reducing the cognitive load from users.   
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Extensibility: Due to its modular architecture design (Fig. 2), XMAS can be readily 
extended in one or more of the following aspects: (1) integrate additional supplemen-
tary datasets such as gene ontology (GO)[19] functional categories and implement 
new data integration operators to enrich users' analytical experience; (2) integrate new 
data operators; and (3) realize additional interestingness evaluators. 

3   Experimental Evaluation 

XMAS’ analytical power lies in the union of three areas: (1) visualization; (2) interac-
tivity; and (3) interoperability. As discussed earlier, existing algorithms and software 
systems lack some or all of these desirable components. Considering the general 
trends in the state of the art: user interaction is limited to data entry, parameter speci-
fication and analysis via a simple (text based) command driven interface. Workflow is 
linear and disjoint, (often spread over numerous systems), and data presentation is 
generally textual (with notable exceptions such as pathway visualization in Gen-
MAPP). 

In this section we present evaluation of XMAS which demonstrates the importance 
and necessity of having the three areas coexist. First, we describe how XMAS can be 
used as an interactive visual tool to foster a greater breadth and depth of understand-
ing within microarray data. Second, a common information goal serves as the entry 
point to a highly-non-traditional workflow drawing on many interoperable compo-
nents of XMAS. Finally, comparative quality information is presented to support the 
generated hypotheses. Throughout, the inherent facilitation of hypothesis generation 
and serendipitous discoveries are highlighted. All evaluations were performed on the 
data set described below. 

3.1   Data Description 

To demonstrate the efficacy of XMAS, we used it to analyze a publicly available 
TSMAD [GEO Accession No: GSE5999] which captures expression data of human 
placentas during pregnancy. Using the description of a TSMAD provided in section 
2.1, five time points (Q=5), comprising N1=6, N2=9, N3=6, N4=6, and N5=9 samples 
capture genome wide (45,000 probes representing 39,000 gene transcripts) expression 
profiles of non-contiguous placentas between 14 and 40 weeks of pregnancy. The 5 
distinct gestational time intervals (Q) range between 14-16, 18-19, 21, 23-24, and 37-
40 weeks. The experiments which compose Q=1 through Q=4 capture the stage of 
pregnancy known as midgestation, and the samples from Q=5 are contained within 
the third trimester, also known as Term. For complete experimental protocol, descrip-
tion and analysis workflow, readers are referred to [20]. The findings on this dataset, 
reported in [20] will be cross-referenced where necessary. The dataset was first pre-
processed as described in Section 2.2. It was then discretized as explained in Section 
2.3. Throughout the following evaluation, a bin size of 1 (i.e., w=1) was used. 

3.2   XMAS as a Visual Interactive Tool to Aid in Data Comprehension 

Developing a detailed understanding of a TSMAD is an important step towards gen-
erating focused analysis and hypotheses. Traditionally, the development of a broad 
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and formal understanding is based almost exclusively on the dissection of output from 
utilizing a variety of analysis systems and algorithms. In contrast, XMAS provides an 
integrated environment to facilitate this process. We next describe two scenarios 
(among many), where XMAS is being used to help expert users gain both a global 
and localized view of the data and many times serendipitous discoveries. 

Expression pattern knowledge discovery: Visualization of discretized trajectories and 
shaped based trajectory clustering (i.e. unique trajectories) provide a global view of 
the entire dataset (Fig. 2(1)). As the user began to specify the operators (Section 2.3), 
the reflective query space updated to indicate the quantity of probes, DEGs and 
unique trajectories that would match the defined operator (Fig. 2). This reciprocal 
interaction aided the user to gain insight into the distribution of probes, DEGs, and the 
variability of probe expression during the specification refinement process. For in-
stance, with 2 mouse clicks—one for the discretization operator and the other for the 
shape-based trajectory clustering--XMAS reveals that there are 76 distinct expression 
patterns and 504 DEGs in the dataset. Using the filter as shown in Fig. 4, more de-
tailed information of such patterns were identified within a few mouse clicks:  6 pat-
terns showing a significant expression increase (≥ 4-fold) at Term, 11 showing an 
expression decrease (≥4-fold) at Term, and only 1 showing a 16-fold increase. One 
more click revealed that only one probe involved in the last case. Such information 
provides the user with an insight into both the global and localized behavior of their 
data. This is in sharp contrast to traditional analyses, where such information is 
gleaned through utilizing a number of tools. Additionally, due to effective integration 
of user knowledge, our evaluation has shown that XMAS can often uncover previ-
ously unknown, yet interesting patterns in the data, thereby leading to serendipitous 
discoveries. 

Pathway involvement analysis: The identification of known biological processes  (or 
pathways) involved in a TSMAD is one main goal in microarray analysis. Following 
the identification of such pathways, domain users often find it necessary to further 
support such identification by investigating the relative involvement of each pathway 
in the context of the entire data set (i.e. not exclusive to DEGs, which are traditionally 
the sole focus of pathway analysis such as GenMAPP). This is generally a labor-
intensive and manual process, which can take up to several hours and may become 
impractical for large pathways. We next use the Apoptosis pathway as an example to 
demonstrate how XMAS can significantly improve in this respect.  

As illustrated in Fig. 5, we first used the pathway membership filter to identify the 
631 probes involved in the Apoptosis pathway, among which 8 were annotated as 
DEGs. We then inspected the annotations accompanying each discretized trajectory in 
the visualization, to ascertain the quantity of probes sharing DEG expression profiles 
(at the discretized level). This, the user determined, was a good way of assessing the 
relative involvement of the entire pathway. Individual probes were subsequently re-
included into analysis, enabling visual assessment on a probe-by-probe basis. 

This simple concatenation of operators led to a focused analysis of pathway in-
volvement, reducing what was previously a multi hour process to a few interactions 
(mouse clicks). Too often, traditional analysis concentrates exclusively on DEG lists, 
and here, simple trajectory association enabled the user to surround DEGs with  
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Fig. 5. User led analysis quickly identified DEG involvement in a given pathway. Probe con-
text information presented within the visualization enables the user to pull in similar, yet non-
DEG probes to focus an analysis on the relative involvement of the pathway as a whole. 

contextually similar probes. Analysis of these probes facilitated a more confident dec-
laration of significance, and led to the specification of a subset of probes which could 
form the basis of subsequent analysis. 

3.3   Negative Expression Shift Approaching the End of Pregnancy 

In this and the following sections, we described a complete workflow to illustrate the 
power of discovering serendipitous knowledge as a direct consequence of the integra-
tion of visualization, interactivity, and interoperability among data operators. Such 
integration enables a highly focused, yet simple analysis, which leads to the exposure 
of pathway involvement, hypothesized crosstalk, and co-expression patterns. These 
types of knowledge could not be reasonably developed by traditional means. The user 
workflow is described below and illustrated in Figs. 6 and 7. 

Towards the end of pregnancy, the placenta begins to shut down in preparation for 
delivery. This process materializes at the genetic level as placental cells switch off, 
and is observed as a shift in expression between the second trimester intervals and 
term (time period 5) 0. The entry point to this analysis was to identify such probes. 

Traditionally, such analysis involves the reduction of the data set into two repre-
sentative samples, between which the expression characteristic can be evaluated. 
However, considerable details can be lost in this process. The analysis from 0, for 
example, assumed constant expression during midgestation, reducing 27 samples to 
just one. This is not the case, as one can observe directly within XMAS (Fig. 3). Fur-
thermore, the lack of interaction in traditional analyses heavily restricts the users’ 
ability to obtain a greater sense of completeness. 

As shown if Fig. 6, we first performed a trajectory shape-based clustering to iden-
tify 39 probes that show a 4-fold or more increase at Term, of which 19 are DEGs. 
The visualization based contextual information further verified that the clustering  
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Fig. 6. Workflow, illustrating the specification of operators used to focus analysis. Correlation 
scores demonstrate the power of exploratory analysis to expose common patterns of biological 
interest based on simple interactions. Key visualizations provide an insight into the environ-
ment in which the user is empowered to apply domain knowledge. 

captured the target characteristic well. DEGs were subsequently excluded from analy-
sis to concentrate on the remaining 20 candidates, as they share similar expression 
patterns with DEGs yet not categorized as DEGs. Through visual inspection of pre-
cise probe trajectories the user was able to exclude probes judged to be of lesser inter-
est in the context of the current analysis. Interactively, we focused on the emergence 
of a specific trajectory shape, shared by 6 probes. Correlation analysis verified and 
strengthened this association. Through this process (Fig. 6), XMAS enables direct 
application of domain knowledge and intuition from the domain user. This is un-
matched by other systems.  

Main Observations: The quantity of discretized trajectories represented by the 39 
probes (Fig. 6) indicates the details lost in traditional methods. XMAS facilitated a 
less strict, more intuitive specification of characteristics, which accommodated a 
greater sense of completeness than traditional analysis is capable of establishing. Fur-
thermore, probe membership information, such as DEG content, was integrated into 
the analysis/query space in various ways. These provided valuable contextual infor-
mation which aided the user in the decision making process. The 6 probes identified 
earlier were of great interest to domain experts, due to the reason that will be dis-
cussed in Section 3.4. Again, such probes would be unlikely to be associated without 
the direct application of user knowledge and intuition. 

3.4   Interoperable Pathway Analysis 

Biologists commonly want to identify the involvement of known biological processes 
in the observed time series. Systems such as GenMAPP, Ingenuity and GSEA provide 
mechanisms by which such pathways can be exposed, yet analysis within such sys-
tems is generally confined to DEGs. Statistical methods are employed to expose the 
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most “significant” pathways represented, but issues relating to the completeness and 
quality of such subsets are here compounded. 

Pathway analysis within XMAS can center on DEGs, as per traditional analysis, 
but is equally applicable to sets of probes sharing other characteristics – demonstrat-
ing the core value of interoperability. The power of XMAS to facilitate the exposition 
of probesets with significant commonality beyond, or in addition to differential ex-
pression, was explored in the previous scenario. Based on a serendipitous discovery, 
this scenario is extended, illustrating pathway analysis functionality within XMAS. 
This process is illustrated in Fig. 7. 

It was indicated by the pathway membership view accompanying the visualization 
of the six probed from the previous use case (see Fig. 7), that the set has a significant 
three probe overlap with the pathway of Calcium regulation in cardiac cells. Interest-
ingness measures provided quantitative support for the discovery, and the application 
of a corresponding pathway filter concentrated analysis on the three matching probes. 
DEG probes were reintroduced into the analysis space, revealing a single DEG shar-
ing the developed characteristics. The appropriateness of the association of the addi-
tional DEG with the existing three probes was confirmed visually, and with the aid of 
the correlation matrices. 

Serendipitous Discoveries: The exposure of 6 non-DEG probes, with a shared trajec-
tory characteristic and expression profile led to the analysis of a pathway, which was 
unlikely to be judged significant by traditional analysis that focuses entirely and glob-
ally on the set of DEGs. The workflow that led to the association of non-DEGs with 
DEGs provided evidence to suggest that the localized observation was significant. 
Domain experts agree that the finding is striking, strengthening its candidacy for web 
lab experimentation. Further from the analysis of Calcium Regulation, the user noted 
a pathway overlap with Purine metabolism. This provides another extension point to 
analysis, which could manifest as a reverse analysis from local observation to global 
view of the relative involvement of Purine metabolism. Smooth muscle contraction is 
another such extension point. 

 

Fig. 7. Workflow for the exploration of a serendipitous pathway discovery 
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Fig. 8. Comparative assessment of association quality: The left figure compares the two sets of 
probes associated by k-means and XMAS respectively; the upper right figure identifies the 
common probe shared by these two sets; and the lower right table compares the factors under 
consideration by K-means and XMAS 

Traditional analysis and analysis within XMAS are difficult to compare directly 
because of the differing emphasis on interaction and exploratory analysis, and global 
statistical/algorithmic analysis respectively. The outputs from both traditional and 
experiential approaches are comparable, however. 

K-means analysis from 0, for example, associated the DEG from our set of four 
(201667_at) with 9 other DEGs, based on expression alone. This set serves as a direct 
comparison for the set of four which emerged from the previously described analysis. 
Despite having more probes, and more DEGs, the literature hits for our set far out-
weigh the expression (only) based association of k-means. See Fig. 8 for details. 

4   Conclusions 

This paper has presented XMAS, a web application developed with a new design 
philosophy to foster increased human-computer synergy. Various interoperable op-
erators have been presented which combine with visualizations and HCI to compose 
an exploratory, interactive analysis system. Detailed use cases and comparisons 
made between XMAS and well established microarray analysis methods present evi-
dence to prove the ability of this new approach to dramatically enhance the users 
experience during analysis. This materializes in the form of new, more complete 
hypothesis generation. 
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