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Abstract

We introduce a method for comparing protein 
structures using the notion of residue contexts based 
on protein Cα-atom backbones.  The residue context is 
derived from the set of vectors from a given Cα-atom to 
each other Cα-atom in the molecule.  A three-
dimensional histogram is generated from these 
vectors, containing a relative distribution of the other 
Cα-atoms for each Cα-atom on the backbone for a 
protein.  Histograms are compared using the χ2 test, 
resulting in the cost for matching any two given Cα-
atoms in a pair of protein molecules. An optimal 
alignment is made using the Smith-Waterman 
algorithm, and a score is calculated based on the 
length of the alignment and the RMSD, yielding a best 
alignment that can be displayed in an interactive user 
interface.  Resulting alignments are compared with 
alignments generated by CTSS, DALI, and CE, 
yielding different aligned protein regions.

1. Introduction

Comparison of protein structures is a fundamental 
problem in drug discovery and structural molecular 
biology. A drug molecule that has unwanted 
interaction with a target protein molecule may work 
well with a similar molecule identified by protein 
structure comparison. Conversely,  a drug targeting one 
protein may have unintended consequences for 
proteins with similar recognition sites. Better 
understanding of the relationship between protein 
structure and function could also lead to deeper 
understanding of the molecular basis of diseases. 
 Protein structure is more highly conserved than 
protein sequence, and structural similarity is often 
associated with functional similarity or common 
phylogeny [2], making protein comparison crucial to 
protein structure prediction, classification of proteins 
into families and folds, finding relevant motifs, and 
mapping phylogenetic trees. The utility of protein 
structural comparison has led to attempts to classify 

known protein structures into a map of the protein 
universe [3]. To this end, structural databases have 
been compiled including Structural Classification of 
Proteins (SCOP) [4],  Families of Structurally Similar 
Proteins (FSSP) [5], Molecular Modeling DataBase 
(MMDB) [6], and Class, Architecture, Topology and 
Homologous superfamily (CATH) [7].  Compounding 
the problem is the rapidly increasing number of known 
protein structures, exemplified by the count of protein 
structures listed in the Protein Databank (PDB), in 
which there are currently more than forty-two 
thousand protein structures. 

Structural alignment is an NP-hard problem [8], 
leading most research into comparison algorithms to 
take advantage of heuristics for reducing the 
complexity of a protein molecule,  typically reducing 
the molecule to the set of positions of the Cα-atoms of 
the protein’s amino acid residues. Many widely used 
techniques [9,  10] use this approach,  treating global 
structure as the set of inter-atomic distances. Other 
methods [11] represent protein structure as the set of 
secondary structure elements (SSEs), either α-helices 
or β-strands. Another set of methods uses localized 
features for structure representation, using techniques 
such as geometric hashing [12, 13] or residue spherical 
shell neighborhood [14] for defining a local feature.

An approach that relies solely on protein structure 
geometry as its descriptor will fail to fully capture the 
underlying biochemical properties that enable 
molecular interactions. In this paper, we present a 
method that uses the notion of the residue context of a 
protein structure that can be used to capture both the 
geometry and biochemical properties of a protein 
molecule. To capture geometry, the backbone of Cα-
atoms is used, and to capture biochemical information, 
appropriate properties can be associated with each 
residue, yielding a rich molecular representation.  
Given the description of a protein in terms of its 
residue contexts, we also propose an efficient 
algorithm that finds meaningful correspondences 
between protein structures. 

Residue context is defined as the set of vectors 
from a given Cα-atom to each other Cα-atom in the 
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molecule, or for a higher resolution, every other non-H 
atom in the molecule. This residue context of an atom 
can be succinctly described by a log-polar histogram 
that contains a relative distribution of other atoms on a 
protein backbone. In this manner, residue context 
inherently captures significance of the localized 3D 
environment of residues. Histograms are compared 
using the chi-squared test, resulting in the cost for 
matching any two given Cα-atom in a pair of protein 
molecules.  Finally, an optimal alignment is made 
using the Smith-Waterman algorithm [15], and the 
aligned substructures are superimposed for 
visualization and calculation of RMSD.

This method includes a number of important 
features that contribute to its potential for use in 
protein structure comparison. First, the computability 
is efficient, because the extremely rich descriptor of all 
of the interatomic features is reduced to a histogram 
encoding feature distributions.  This compact 
representation allows for rapid calculation of 
alignments. Residue context also captures the greater 
influence of local atoms on prediction of binding sites 
where usual methods calculate unweighted interatomic 
distances as the principal feature of their descriptors. 
The incorporation of data from amino acid side chains 
both geometric and biochemical also deepens the 
value of residue context for a given Cα-atom. All of 
these features of residue context correspond to our 
understanding of the biological reality of a protein that 
does not depend so much on the structure of the 
backbone as the qualities across the surface of the 
molecule.

The structural comparison proposed here is 
rotationally and translationally invariant and the 
aligned features are local to each protein, increasing 
the chances of finding a biologically relevant match. 
The alignment is robust, i.e. resilient to small 
perturbations of Cα-atom positions, and the descriptors 
are compact, taking a very rich set of inter-atomic 
distances and capturing that information in a much 
smaller histogram. Finally, the method takes into 
account biochemical features of amino-acid residues, 
ensuring that consequential alignments are made. 

2. Prior Work

 Prior work in protein structure alignment has 
produced many methods that have attempted to obtain 
a relevant alignment of two protein structures. Early 
work in this area included the DALI method [9], 
which simply considers the interatomic distances 
between all Cα-atoms along the protein backbone. 
Other approaches have been made using combinatorial 
extension of aligned fragment pairs [10].  More 
recently, published methods include approximate 
structural alignment achieved in polynomial time [16], 
a method that defines protein structural alignment as a 

mixed integer programming (MIP) problem, and using 
a mean field annealing technique [17]. Another 
technique uses the TM-score,  which is up to 20-fold 
faster than some popular methods [18]. Towards the 
goal of finding biologically relevant alignments, other 
recent work has attempted to find structurally similar 
proteins that are diverse in chain-topology [19]. 
Several methods have also treated protein molecules 
as sets of secondary structure elements [20],  which can 
apply other information such as curvature and torsion 
of the Cα-atom backbone represented as a spline [1], or 
probabilistic methods [21]. Finally, there have also 
been attempts to organize known protein structures 
into a space such that similar proteins are grouped. 
One study [22] using the Monte Carlo algorithm found 
several fold attractors,  grouping proteins largely based 
on secondary structure element composition. Another 
method [23] clusters proteins on a basis of inter-Cα 
distances. Most of these types of universal methods 
allow visualization of proteins on 3D axes, including a 
method using SSE triplets [11], using DALI [24, 25], 
and gene ontology functional classification [3].
 In prior research, the method technically closest in 
spirit to residue context is CTSS [1], which identifies 
local similarity in curvature and torsion of the protein 
backbone represented as a spline. The general idea of 
these methods is to identify locally similar features, 
and to extend the alignment of residues until the 
longest possible alignment is found within a given 
superimposition metric (usually RMSD). The notion 
of residue contexts differs subtly but significantly 
from CTSS. The geometric features in CTSS are 
highly localized in that they do not provide a complete 
representation of the local environment of the Cα-
atoms. Furthermore, the spacing of Cα-atoms leads to 
numerical difficulties in accurately computing values 
of curvature and torsion that require computation of 
derivatives. Residue context does not suffer from these 
drawbacks and as results in the experimental section 
show, often provides alignments that have lower 
RMSD than CTSS. 

3. Method 

 The idea of residue contexts builds on research 
directed at shape matching in computer vision [26]. In 
residue context, a protein molecule is considered as 
the set of its Cα-atoms. While this information does 
not tell us everything about the molecule, it gives a 
reasonable representation of the structure of the 
protein. A more detailed depiction of the molecule can 
be obtained by using all of the non-hydrogen atoms in 
the side-chains. The goal of this approach is to find an 
alignment between substructures of the Cα-atoms 
backbones of two molecules such that there is an atom 
pi on the first molecule that corresponds to an atom qj 
on the second molecule. 
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3.1 Defining residue context

Residue context is defined for each atom as the set 
of relative positions of every other atom in the 
molecule (Figure 1).  This set of n – 1 vectors describes 
the arrangement of the full Cα-atom backbone relative 
to the reference atom. Using such a rich descriptor for 
every atom ensures that the biological significance of 
protein structure is captured.

This method can be used either to obtain the 
global best alignment between two protein structures, 
or a local alignment between a subset of amino acid 
residues. Many biological problems require global 
alignment, such as phylogenetic mapping and other 
evolutionary biology questions.  However, for most 
applications of protein structure alignment in 
biomecidine and pharmacology, the interest is in 
finding similar active and binding sites within 
proteins. These types of approaches require methods 
that determine the best local alignment between two 
molecules.  A histogram is constructed for each Cα-
atom, containing the distribution of positions of other 
Cα-atoms in the molecule based on the set of vectors 
from pi to each other Cα-atom pk:

(1)

In Eq(1), |.|  denotes the size of the set. This yields 
a three-dimensional histogram for each atom, with 
binning in log-polar space to give higher sensitivity to 
closer atoms than distant atoms. Giving higher 
precision to atoms closest to pi preserves the regional 
aspects of protein geometry that are important in 
identifying relevant binding and active sites. 
Rotational invariance is maintained by using a relative 
frame, based on the vector from pi to p(i +1),  in the N-
terminal direction. 

3.2 Pairwise Comparison and Normalization

 In constructing a structural alignment between 
two protein molecules, we define a cost of matching 
two Cα-atoms pi and qj, where Cij = C(pi, qj). To 
calculate the cost, the χ2-test is used to make an all-by-
all comparison of each histogram from each molecule. 
The cost of matching two histograms is equal to the χ2 
distance between the histograms, yielding a two-
dimensional matrix of χ2 distances between each Cα-
atom on each molecule:

(2)

The cost may also include an additional value 
representing the biochemical difference between two 
amino acid residues, based on hydrophobicity, charge, 
size, or function as a hydrogen-bond donor or 
acceptor. The strength in adding this type of matching 
cost is that each protein molecule has a descriptor 
based on a combination of geometric and biochemical 
information. 

The cost matrix Cij is normalized using the interval 
[low, high] for use in the dynamic programming local 
alignment part of the method,  with low set to a default 
of -10.0, and high set to 20.0.  These values comprise a 
range similar to the PAM matrix (31). The final matrix 
M is then computed using the following equation:

(3)

3.3 Alignment and Superimposition

Given a normalized cost matrix M containing the 
difference in residue context between each Cα-atom in 
each protein molecule, an alignment of protein 
backbones is made using the Smith-Waterman 
dynamic programming algorithm [15].  An affine gap 
cost model is used, where opening a gap and extending 
a gap have different costs, the defaults being 14 and 10 
respectively. The best local alignment may have gaps 
in places where the protein backbone turns at sharp 
angles,  potentially giving the alignment a high RMSD. 
Therefore, an additional step of superimposing the two 
aligned regions is applied. Given a set of 
corresponding Cα-atoms, the optimal rotation and 
translation are computed using a fast non-iterative 
least-squares solution from [1] that uses the singular 
value decomposition (SVD) with some adjustments to 
ensure a accurate rotation matrix. The final score 
equals the length of alignment divided by RMSD.
 The best scoring alignment is then displayed as 
the superimposition of the subset of residues from 
each molecule in the alignment. Superimposition also 
lends itself to easy visualization of the alignment, 
which can then be used to make an intuitive check of 

(a) (b)
Figure 1. (a) Residue context for an atom pi is 
defined as the set of vectors to each other atom 
pk. (b) The vectors are binned in three-
dimensional log-polar space, i.e. a 3D version of 
the figure, giving higher sensitivity to atoms 
closest to pi.
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Table 1. Comparison of alignments of several proteins made by different algorithms.

PDB IDs Protein 
Lengths

% 
Sequence

Identity

Residue
Context
RMSD

Residue 
Context 

Alignment 
Length

CTSS 
RMSD

CTSS 
Alignment 

Length
DALI RMSD

DALI 
Alignment 

Length

CEmedium 
RMSD

CEmedium 
Alignment 

Length

2AQM 154 29 1.9 43 2.3 40 2.2 140 2.0 1392C9V 153
1BYI 224 5 1.5 25 1.5 21 3.6 41 5.8 482IGD 61
1SBY 254 23 2.6 43 3.6 186 2.8 222 2.4 2151ZK4 251
1PJX 314 6 2.7 26 7.3 24 4.4 33 4.9 482IIM 62
2FBA 492 5 2.7 25 3.0 26 4.0 65 6.0 802G58 121
1K5N 276 5 2.3 21 6.0 30 4.9 39 5.5 481L9L 74
1H97 147 8 2.5 21 16.9 142 6.4 63 6.3 801KQP 271
1R0R 274 5 2.6 20 2.7 23 4.6 61 7.4 722G58 121
1GU2 124 5 3.0 22 1.2 21 * * 5.7 722FBA 492
2AVM 99 11 2.9 21 18.9 20 3.3 45 3.5 642H5C 198
1OK0 74 8 3.0 22 * * * * 3.9 402IGD 61
1YFQ 342 6 3.1 20 5.1 22 3.4 35 5.6 642H5C 198
1H97 147 4 3.1 20 9.6 91 3.0 53 5.8 851PSR 100
1C9O 66 9 3.1 20 12.6 46 * * 6.4 481YS1 320
* No alignment found by software.

(a) (b) (c) (d)
Figure 2. Superimposed alignments made using residue context method compared with RMSD and 
alignment length from CTSS. (a) Superimposed alignment between 1BYI and 2IGD, with RMSD 1.5 Å and 
length of 25. CTSS returns an alignment with RMSD 1.5 Å and length of 21. (b) Superimposed alignment 
between 1SBY and 1ZK4, with RMSD 2.6 Å and length of 43. CTSS returns an alignment with RMSD 3.6 Å 
and length of 186. (c) Superimposed alignment between 1K5N and 1L9L, with RMSD 2.3 Å and length of 
21. CTSS returns an alignment with RMSD 6.0 Å and length of 30. (d) User interface with superimposed 
alignment between 2AQM and 2C9V, with RMSD 1.9 Å and length of 43. CTSS returns an alignment with 
RMSD 2.3 Å and length of 40. Superimposed residues with the highest scoring alignment for 2AQM and 
2C9V are shown on the left, with the matrix of χ2-distances on the right. Darker patches represent 
corresponding Cα-atoms with lower χ2-distances. Highest scoring alignments are shown in yellow, with the 
best alignment shown in red. 
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the alignment. An interactive user interface from [1] 
was implemented to allow detailed examination of the 
superimposed alignment (Figure 2). 

3.4 Complexity

Residue context histogram construction requires 
computation of the vector of each Cα-atom with 
respect to each other Cα-atom, so the complexity for 
this step is O(n2). An important note is that residue 
context computation is offline. The matrix Cij 
containing an all-by-all comparison of the residue 
contexts represented by χ2-values requires comparison 
of each bin in each histogram to each other bin in each 
other histogram, so the complexity for constructing 
this matrix is O(kmn), where k is the number of bins, 
and m and n are the number of residues in each 
molecule. The metric-properties of the χ2 distance 
(specifically, the triangle inequality), may also be used 
during comparisons, to exclude comparing molecules 
that are significantly different. The Smith-Waterman 
algorithm also requires the calculation of alignment 
score for an all-by-all comparison of two protein 
molecules,  so an additional complexity of O(mn) is 
added. Finally the least-squares superimposition 
a l g o r i t h m u s e d t o c o m p u t e t h e o p t i m a l 
superimposition is done in O(n) time. The complexity 
then adds to:

€ 

O(n2) +O(kmn) +O(mn) +O(n) (4)

4. Experiments 

For our experiments,  we selected a number of 
protein pairs that illustrate the ability of the residue 
context method to represent protein molecules in such 
a way that lends itself to meaningful structural 
alignments. (Table 2). Protein pairs were chosen with 
sequence identity ≤30%. These types of alignments are 
inherently more meaningful than those with higher 

primary sequence identify, because they treat the 
structure of the molecules without reliance on the fact 
that proteins with near-identical primary sequences 
will always have similar structures. A total of 241 
protein structures were compared in an all-by-all 
alignment, with a subset of 14 alignments of interest 
for which we show results, compared to alignment 
results using CTSS [1], DALI [9],  and CEmedium [10]. 
The two metrics we use to compare alignment results 
are RMSD and alignment length. We have chosen the 
medium parameter for CE, corresponding to the 
default similarity threshold heuristic [10]. Several 
alignments based on residue context are shown in 
Figure 2.

Next, we compare an alignment made using 
Residue Context with the alignments made using 
CTSS, DALI and CE (Figure 3). In aligning 1PJX and 
2IIM, with sequence identity of 6%, Residue Context 
produces a significantly lower RMSD of 2.7 Å,  while 
CTSS, DALI, and CE produce RMSD values of 7.3 Å, 
4.4 Å, and 4.9 Å, respectively. Both Residue Context 
and CTSS produce alignments with no gaps between 
aligned residues, while DALI and CE produce 
alignments with several gaps each. All of the protein 
comparison algorithms identify β-strand motifs, but 
each algorithm selects different locations on each of 
the protein molecules to align.

5. Conclusions

We have presented a novel method for protein 
structure comparison based on the notion of Residue 
Context. The principal contribution of our proposed 
method is the extraction of relevant features of protein 
molecules that have been shown to contribute to 
formation of protein binding and active sites.  Because 
each atom is considered within the neighborhood of 
surrounding atoms, this method diverges from typical 
protein structural comparison and can capture the 
impact of both local and distant neighborhoods of each 

   
(a) (b) (c) (d)

Figure 3. Superimposed alignments made using residue context method compared with superimposed 
alignments made with CTSS, DALI, and CE. (a) Superimposed residue context alignment between 1PJX 
and 2IIM, with RMSD 2.7 Å and length of 26. (b) Superimposed CTSS alignment between 1PJX and 2IIM, 
with RMSD 7.3 Å and length of 24. (c) Superimposed DALI alignment between 1PJX and 2IIM, with 
RMSD 4.4 Å and length of 33. (d) Superimposed CE alignment between 1PJX and 2IIM, with RMSD 4.9 
Å and length of 48.
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residue.  This representation of residue context for a 
protein supports a highly efficient matching strategy 
that takes advantage of the compactness of the 
extracted features.

The experimental and comparative results using 
proteins of low sequence identity highlight the ability 
of residue context alignments to find correspondences 
between similar regions of molecules. Residue context 
alignments tend to be shorter than those obtained 
using CTSS, DALI, or CE, which may aid in future 
efforts towards applying this method to finding further 
known binding site alignments. Another experimental 
approach is implied by the “fine-tuned” alignment 
found by residue context: A query protein could be 
used to find a rough overall alignment using 
algorithms like CTSS, DALI, or CE. After locating 
proteins with similar overall structure, the residue 
context could be used to identify substructures of 
those proteins that are actually likely to exhibit similar 
binding and functional activity.

While residue context as defined here provides a 
rich descriptor for protein structure, there are many 
possible additional protein features that could be 
included in the residue context. Future efforts will be 
directed at using different measures of similarity and 
extend the use of the algorithm to structural features 
such as residue side chains. 

6. References

[1] T. W. Can, Y.F., "CTSS: a robust  and efficient method 
for protein structure alignment based on local  geometrical 
and biological feature," in Proc. of the 2003 IEEE 
Bioinformatics Conference, 2003, pp. 169-179.
[2] C. Chothia and A. Lesk, "The relation between the 
divergence of sequence and structure in proteins," EMBO J., 
vol. 5, pp. 823-826, 1986.
[3] M. Vendruscolo and C. Dobson, "A glimpse at the 
organization of the protein universe," Proc. Natl. Acad. Sci. 
U.S.A., vol. 102, pp. 5641-5642, 2005.
[4] Murzin et  al., "SCOP: A structural classification of 
proteins database for the investigation of sequences and 
structures," J. Mol. Biol., vol. 247, pp. 536-540, 1995.
[5] L. Holm and C. Sander, "Touring protein fold space 
with  Dali/FSSP," Nucleic Acids Res., vol. 26, pp. 316-319, 
1998.
[6] H. e. a. Ohkawa, "MMDB: an ASN.1 specification for 
macromolecular " ISMB, vol. 3, pp. 259-267, 1995.
[7] Orengo, C. et al., "CATH: a hierarchic classification of 
protein domain structures," Structure, vol. 5, pp. 1093-1108, 
1997.
[8] A. Godzik, "The structural alignment  between two 
proteins: Is there a unique answer?," Protein Science, vol. 5, 
pp. 1325-1338, 1996.
[9] L. Holm and C. Sander, "DALI: a network  tool for 
protein structure comparison," Trends Biochem. Sci., vol. 20, 
pp. 478-480, 1995.

[10] I. Shindyalov and P. Bourne, "Protein structure 
alignment by incremental combinatorial extension (CE) of 
the optimal path," Protein Engineering, vol. 11, pp. 739-747, 
1998.
[11] M. M. Young, A. G. Skillman, and I. D. Kuntz, "A rapid 
method for exploring the protein structure universe," 
Proteins: Structure, Function, and Genetics, vol. 34, pp. 
317-332, 1999.
[12] R. Nussinov and H. J. Wolfson, "Efficient detection of 
three-dimensional structural  motifs in biological 
macromolecules by computer vision techniques," 
Biophysics, vol. 88, pp. 10495-10499, 1991.
[13] X. Pennec and N. Ayache, "A geometric algorithm to 
find small but  highly similar 3D substructures in proteins," 
Bioinformatics, vol. 14, pp. 516-522, 1998.
[14] N. Leibowitz, Z. Y. Fligelman, R. Nussinov, and H. J. 
Wolfson, "Multiple Structural Alignment and Core Detection 
by  Geometric Hashing," n Proc. of the 7th International 
Conference on Intelligent Systems for Molecular Biology 
(ISMB), pp. 169-177, 1999.
[15] T. Smith and W. M., "Identification of Common 
Molecular Subsequences," J. Mol. Biol., vol. 147, pp. 
195-197, 1981.
[16] Kolodny R and L. N., "Approximate protein structural 
alignment in polynomial time.," Proc. Natl. Acad. Sci. 
U.S.A., vol. 101, pp. 12201-12206, 2004.
[17] L. Chen, T. Zhou, and Y. Tang, "Protein structure 
alignment by deterministic annealing," Bioinformatics, vol. 
21, pp. 51-62, 2005.
[18] Y. Zhang, & Skolnick, J., "TM-align: a protein structure 
alignment algorithm based on the TM-score," Nucleic Acids 
Research, vol. 33, pp. 2302-2309, 2005.
[19] Dundas J, et  al., "Topology independent protein 
structural alignment," BMC Bioinformatics, vol. 8, p. 388, 
2007.
[20] E. Krissinel and H. K., "Secondary-structure matching 
(SSM), a new tool for fast protein structure alignment in 
three dimensions," Acta Cryst, vol. 60, pp. 2256-2268, 2004.
[21] E. S. Shih and M. J. Hwang, "Protein structure 
comparison by probability-based matching of secondary 
structure elements," Bioinformatics, vol. 19, pp. 735-741, 
2003.
[22] L. Holm and  C. Sander, "Mapping the Protein 
Universe," Science, vol. 273, pp. 595-602, 1996.
[23] R. Sowdhamini, S. Rufino, and T. Blundell, "A database 
of globular protein structural domains: clustering  of 
representative family members into  similar folds," Folding 
& Design, vol. 1, pp. 209-220, 1996.
[24] J. Hou, S. Jun, C. Zhang, and S. Kim, "Global mapping 
of the protein structure space and application in structure-
based inference of protein function," Proc. Natl. Acad. Sci. 
U.S.A., vol. 102, pp. 3651-3656, 2005.
[25] J. Hou, G. Sims, C. Zhang, and S. Kim, "A global 
representation of the protein fold space," Proc. Natl. Acad. 
Sci. U.S.A., vol. 100, pp. 2386-2390, 2003.
[26] S. Belongie, J. Malik, and J. Puzicha, "Shape Matching 
and Object Recognition Using Shape Contexts," IEEE 
Transactions on Pattern Analysis and Machine Intelligence, 
vol. 24, pp. 509-522, 2002.

801801


