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Abstract 
We propose a novel user-dependent method for the 

recognition of on-line handwritten notes. The method 
employs as a dissimilarity measure the “degree of mor- 
phing” between an input curve and a template cutie. 
A physics-based approach substantiates the “degree of 
morphing” as a deformation energy and casts the pr’ob- 
lem as an energy minimization problem. The method 
operates upon key segmentation points that are pro- 
vided by an appropriate segmentation algorithm. The 
segmentation objective is not to locate letters, but in- 
stead to locate corners and some key low curvature 
points (an easier task). This is part of the method’s 
strategy to see the word as a generic on-line curve. 
Due to this strategy, the proposed method can handle 
collectively both, cursive words and hand-drawn line 
figures, the two key ingredients of handwritten notes. 
Most importantly, the proposed system achieves high 
recognition rates without ever resorting to statistical 
models. 

1 Introduction 
In this paper we introduce a framework for han- 

dling collectively the recognition of on-line handwrit- 
ten note patterns in a user-dependent setting. A pre- 
liminary version of this work was reported in [9]. We 
propose the use of shape metamorphosis as a poten- 
tially powerful way of dealing with the recognition of 
complex hand-drawn, on-line patterns. Shape meta- 
morphosis is a well established graphics technique [ll] 
that refers to the problem of computing a continu- 
ous shape transformation from an initial shape to a 
target shape. The proposed system is based on the 
fact that two similar shapes do not undergo extensive 
metamorphosis if one of them is morphed to the other. 
Thus, the degree of morphing between a test pattern 
and a reference pattern may serve as the matching 

criterion. $Ve compute the degree of morphing using a 
phy$its-btied approach to shape metamorphosis first 
pto$osed by T. W. Sederberg et al. [ll], for computer 
based aniniation. The framework proposed by us in- 
ch&s modifications to Sederberg’s method [ll], so as 
to deal with issues specific to the problem of on-line 
had-drawh shape recognition. 

Most, of the current research in handwritten note 
recogtition deals with cursive script recognition [3, 7, 
10, 121 and on-line hand-drawn line figure recognition 
[5, 61, in an independent manner. In our approach, 
both cursive words and line figures are considered in 
the unifying framework of an on-line (possibly discon- 
titiuous) curve. The recognition task is thus reduced 
to the computation of the similarity of these curves. 
Furthermore the use of a dynamic programming ap- 
ptoach to compute the degree of morphing allows for 
the incorporation of local deformations in computing 
a global measure of dissimilarity. 

The metamorphosis-based shape recognition sys- 
tem consists of three modules: Shape Sampling and 
Preprocessing, Shape Segmentation, and Shape Meta- 
morphosis. Preprocessing is performed according to 
the work in [l] and [4]. The segmentation algorithm is 
described in Section 2. Section 3 unveils the shape 
metamorphosis method and its use in the pattern 
recognition context. In Section 4, the results from ex- 
perimental tests are presented and discussed. Finally, 
in Section 5 the paper is summarized, conclusions are 
drawn, and future work is outlined. 

2 Shape Segmentation 
Morphing a curve by involving all its constituent 

pixels is both computationally expensive and prone 
to pixel level variations caused by quantization errors. 
We use an alternate representation wherein, a curve 
is modeled by identifying it? perceptually important 
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points (comer points), along with points identifying 
regions of slowly varying curvature (key low curvature 
points). The detection of corner points is done by us- 
ing the algorithm suggested by Brault et al. [2]. By 
using criteria conjugate to that of locating corners, 
the regions of the curve with a slowly varying curva- 
ture are identified. These regions are represented by 
placing a key low curvature point in their middle. A 
detailed account of this segmentation approach can be 
found in [8]. 

Figure 1: (a) Reconstruction of the handwritten 
character “x” using corner points only. (b) Recon- 
struction of the handwritten character “x” using cor- 
ner and key low curvature points. 

The representation of hand-drawn curves, by inter- 
leaving points of high curvature with points of low cur- 
vature not only facilitates their reconstruction using a 
small number of points (see Fig. l), but also provides 
a consistent representation pattern (a key low curva- 
ture point between every two corner points), which 
facilitates the metamorphosis process. 

3 Shape Metamorphosis 
Shape metamorphosis is defined as the transforma- 

tion of one shape (initial) to another shape (target). 
IfPi (i=O,l,... , n) denote the segmentation points 
of the shape S, then the shape S could be represented 
in vector form as 

s = [F&P1 )...) P,]. (1) 

In our work, metamorphosis of an initial shape S’ to 
a target shape ST involves a linear interpolation be- 
tween the corresponding segmentation points of the 
two shapes. This interpolation could be discretely 
timed to give a series of intermediate shapes. 

Since most initial and target shapes do not have 
the same number of segmentation points, establish- 
ing a point correspondence between the shapes is a 
central issue in shape metamorphosis, An important 
constraint in obtaining the necessary correspondences 
is the avoidance of intermediate chaotic shapes. Such 

shapes are albtained if, similar parts between the ini- 
tial and the target shapes are not maintained during 
metamorphosis. As our approach is based on relating 
the degree of morphing between two on-line curves to 
the similarity between their shapes, maintaining simi- 
lar parts between the initial and final shapes is essen- 
tial. An intuitive consequence of this strategy would 
be the lack of any metamorphosis, if the initial and 
target shapes are identical. 

Our approach to establish the point correspon- 
dences is based on the work of Sederberg et al. [ll]. 
All the possible correspondences between the n seg- 
mentation points of the initial shape and m segmen- 
tation points d the target shape are represented by an 
m x n matrix. Each shape is considered to be made 
of virtual wires. The metamorphosis of one shape to 
another takes place through stretching and bending 
of the respective wireform shapes. The cost of a point 
correspondence is equal to the virtual energy spent 
in deforming the wire to realize that correspondence. 
The computation of the optimal point correspondence 
can, therefore., be regarded as an optimization prob- 
lem which involves associating each point of the initial 
curve to at least one point of the target curve and vice- 
versa, by using minimal energy. A quadratic time (in 
the number of segmentation points) solution to this 
problem can bie found using dynamic programming. 

The main goal in [ 1 l] , was to produce visually pleas- 
ing metamorphloses with the least possible human (an- 
imator) intervention. A visually pleasing metamor- 
phosis is achieved by maintaining the similar parts be- 
tween the initial and the target shapes and smoothly 
deforming the dissimilar parts. At the intuitive level, 
the requirements for a visually pleasing metamorpho- 
sis appear to facilitate also the production of a non- 
chaotic metamorphosis. In other words, Sederberg’s 
method [ll] terrds to link the degree of morphing with 
the shape dissimilarity, which is our main goal (pat- 
tern recognition). 

3.1 Metamorphosis-based shape match- 
ing 

A direct application of Sederberg’s approach [ll] to 
quantify the differences between hand-drawn shapes is 
precluded due to the following reasons: 

1. It does not ‘elaborate on how to automatically se- 
lect points for representing a shape. 

2. The computation of the deformation energy 
(stretching and bending) depends on a number of 
parameters, the values of which need to be speci- 
fied appropriately if we are to obtain the desired 
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non-chaotic behavior. We have found, in partic- 
ular, that special care should be given to the fine 
tuning of the bending energy parameters. 

3. It does not include any knowledge specific to the 
handwriting domain. Specifically, we have fomd 
that the response of the deformation measure be- 
comes more robust if we take into account the 
following fact: two different versions of the sakne 
shape (word or figure), if they have been written 
by the same user, don’t have radically different 
numbers of segmentation points. This is empha- 
sized in our method by the introduction of an 
additional term in the energy formula. 

Figure 2: Optimal Figure 3: Matrix repre- 
point correspondence for sentation of all possible 
the handwritten word hi. point correspondences. 

The automatic selection of shape points has been 
solved by the introduction of the segmentation algo- 
rithm [8] described in Section 2. The other tpro issues 
have been addressed by the introduction of two &p- 
propriate modifications in the original physics-based 
metamorphosis method [ll]. Specifically, the pro- 
posed metamorphosis-based matching works as fol- 
lows: It employs the dynamic programming technique 
suggested in [ll] to find the optimal point correspon- 
dence set. It is the by-product of this process (i.e., 
the cost of the optimal correspondence) which is really 
used for the shape matching task. Fig. 2 shows par- 
tially the optimal point correspondence set between a 
test sample and the prototype of the handwritten word 
hi. The beginning of the reference word differs from 
the beginning of the test word in that it features an 
extra stroke. Fig. 2 shows how the dynamic program- 
ming algorithm optimally solves the local imbalance 
in points by corresponding point 0 from the test word 
to points O,l, and 2 in the reference word. Fig. 3 
shows a part of the the optimal point correspondence 
set (bold arrow) for the words in Fig. 2. 

The method responds predictably as the shape 
dissimilarity increases by producing proportionally 
greater energy deformation values. We have found, 
however, that the response of the system becomes 
more robust by augmenting the cost (deformation en- 
ergy Etotal) of the optimal correspondence set in the 
following way: 

Ea = Etotal + 5* ) n - m 1 

where n is the number of segmentation points of the 
test shape, m is the number of segmentation points 
of the reference shape, and E, is the augmented en- 
ergy requirement. The weight factor 5 in Eq. (2) has 
been chosen for its adequate experimental behavior. 
The additional term added to the original energy re- 
quirement emphasizes the fact that different versions 
of the same shape (either cursive word or line figure) 
don’t have radically different numbers of segmentation 
points. 

The point correspondence cost is materialized in 
terms of stretching and bending energy. Following the 
formulation by Sederberg et al. [ll], the stretching 
energy for a piece of virtual wire is given by the equa- 
tion: 

1 LT - LX 1” 

Es = fs(l - C,)min(LI,LT) + csmux(L~,LT)’ (3) 

where LI is the initial length of the wire and LT 
is its length after the deformation. The term c, (set 
to 0.5) is a user-definable parameter which controls 
the penalty for segments of the wire that collapse to 
points during the metamorphosis. Finally, fs (set to 
100.0) is the user-definable stretching stiffness param- 
eter. Different values in the user-definable parameters 
give different interpretations in the meaning of mini- 
mum energy. Since we are interested in linking mini- 
mum’ energy metamorphosis to shape dissimilarity, a 
good way to test our minimum energy model is to see 
how it behaves in the case of two very similar shapes 
(see Fig. 4). The correct model should give almost im- 
perceptibly different in-between shapes and it should 
yield almost zero energy expenditure. We have exper- 
imentally determined that this is always the behavior 
of the model only when the wire is made stiffer with 
respect to bending and looser with respect to stretch- 
ing. 

The bending energy equation is formulated analo- 
gously to the stretching energy equation. The notable 
difference is that bending deforms angles and not wire 
segments and hence applies to consecutive triples of 
segmentation points instead of pairs of segmentation 
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Figure 4: Metamorphosis of a test sample of the word 
eflortless to its prototype sample kept in the database 
(user 1). The metamorphosis is an example of a min- 
imal deformation between similar handwritten words 
and produces the correct matching. 

points. More specifically, the bending energy is given 
by the equation 

E/, = 

fb(& + mbA@+)2 + Pb 
if d(t) does go to zero, 

fa(Ati + mbA@j2 
if d(t) never goes to zero 

(4) 

where fb indicates bending stiffness (set to 0.02), 
mb penalizes bending angles which deform non- 
monotonically (set to lOO.O), and pb penalizes bending 
angles from going to zero (set to 1000.0). The term 
Ac$ represents the bending angle change in radians 
due to the metamorphosis of the particular triplet of 
segmentation points. A4* is a non-negative quantity 
that expresses in radians how much the bending angle 
change deviates from monotonicity. The severe penal- 
ties expressed by fb and mb account mostly for. the 
restrictions placed in the amount of bending involved 
in each metamorphosis. 

Table 1: Test results. 

The method as it is described applies to singly con- 
nected shapes only (no pen-up movements). A writer 
can break a word or a figure in variable points from 
writing to writing. The problem is, to have the test 
and reference shapes have the same number and ar- 
rangement of segments. Only then, similar shapes will 
appear similar to the metamorphosis method too. 

The method appears to be ideal for interpreting on- 
line notes that include cursive words and simple line 
figures. Fig. 6(a) for example, shows the handwritten 
block diagram of a typical low-level vision system as 
it was produced by user 1. Fig. 6(b) shows the in- 
terpretation our system gave to Fig. 6(a) after having 
successfully matched each word and line figure in the 
sketch. 

Because for cursive words and typical line figures, 
the number of segments is very small (usually not more 
than 6 - 8 segments per shape), we opted to solve the 
problem in the following way: we compute the degree 
of morphing as the minimum energy value over all 
possible fusion combinations of consecutive segments. 
Delayed strokes are handled in a special manner. They 
are connected from left to right and they constitute 
always a single segment labeled as delayed. 

4 Experimental Results 

-I 

Figure 5: Handwritten samples from users 9, 12, 1, 
and 5. 

The experimental setup, in which the above method Two major sources of failure were identified: One 
has been implemented, consists of a graphics work- source of failure was poor preprocessing performance, 

station (SGI Indigo T”R4000) and a graphics tablet 
(WACOM UD - 0608R). Twelve users have partic- 
ipated in thLe experiments. A reference database of 
one hundred cursive words, and seven hand-drawn line 
figures has been established from each user. For each 
shape in the reference databases, four test shapes have 
been collected at different days and times over a period 
of four months. Fig. 5 shows handwritten samples 
from four different users. The test shapes from each 
user were matched against the corresponding reference 
database only (user-dependent system). The results of 
the experiment are presented in Table 1. 

[ Users 11 Success Rate 1 
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especially in words which are very look alike (e.g., 
mad and mud). The other source of failure was poor 
postprocessing performance of the segment fusion al- 
gorithm in the case of line figures. The time sequence 
of the various segments in certain line figures can vary 
from drawing to drawing. For example, the double 
arrow was found to be drawn by a user one time as 
arrow tip - line - arrow tip and another time as ar- 
row tip - arrow tip - line. The current segment fusion 
algorithm always preserves the time sequence of the 
segments (except of delayed strokes). Consequently, 
it is unable to handle the change in the time sequence 
observed sometimes in the case of the double arrow. 

Figure 6: (a) Handwritten block-diagram from user 
1. (b) Interpretation by the metamorphosis-based sys- 
tem. 

5 Conclusions and Future Work 
A novel method for the recognition of on-line hand- 

written notes (cursive words and line figures) has been 
described. The strong points of the method are: 

1. robust behavior verified experimentally, 
2. real-time performance, 
3. sin 
4. 

le reference samples from each shape, 
co1 ective handling of words and figures. k 

Currently, the weakest point of the method appears 
to be the unidirectional flow of information from the 
preprocessing stage towards the metamorphosis stage. 
For example, the presence of multiple close matching 
scores may indicate the need to adjust the prepro- 
cessing to capture more discriminant features. The 
metamorphosis-based matching proved to be as good 
as the quality of information that is provided. 

The segment fusion algorithm currently in use, is 
better suited for cursive words than 2-D on-line fig- 
ures. Further research is needed towards more ef- 
fective ways of handling the segment correspondence 
problem in the case of line figures. 
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