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Abstract 

 
Ascertaining the similarity amongst molecules is a 

fundamental problem in biology and drug discovery. 
Since similar molecules tend to have similar biological 
properties, the notion of molecular similarity plays an 
important role in exploration of molecular structural 
space, query-retrieval in molecular databases, and in 
structure-activity modeling. This problem is related to 
the issue of molecular representation. Currently, 
approaches with high descriptive power like 3D 
surface-based representations are available. However, 
most techniques tend to focus on 2D graph-based 
molecular similarity due to the complexity that 
accompanies reasoning with more elaborate 
representations. This paper addresses the problem of 
determining similarity when molecules are described 
using complex surface-based representations. It 
proposes an intrinsic, spherical representation that 
systematically maps points on a molecular surface to 
points on a standard coordinate system (a sphere). 
Molecular geometry, molecular fields, and effects due 
to field super-positioning can then be captured as 
distributions on the surface of the sphere. Molecular 
similarity is obtained by computing the similarity of 
the corresponding property distributions using a novel 
formulation of histogram-intersection. This method is 
robust to noise, obviates molecular pose-optimization, 
can incorporate conformational variations, and 
facilitates highly efficient determination of similarity. 
Retrieval performance, applications in structure-
activity modeling of complex biological properties, 
and comparisons with existing research and 
commercial methods demonstrate the validity and 
effectiveness of the approach. 
 
1. Introduction 
 

Across all biological and pharmaceutical 
investigations, the discovery (or development) of 
molecules with desired biological activity continues to 

be an important goal. Efforts to attain this goal are 
strongly driven by the notion of molecular similarity 
because in general similar molecules tend to behave 
similarly [7, 13]. In contemporary research and 
development, applications of the notion of molecular 
similarity can be observed to have broadly occurred 
along the following three directions:  
• Bio-chemical and computational exploration of the 

molecular structural space consisting of known 
(synthesized or non-synthesized) structures. 

• Development of computational structure-property 
models that relate variations in molecular structure 
to variations in molecular activity or properties 

• Querying of molecular structural databases. 
Specific examples of the above abound. For instance, it 
is well known that the biological activities of proteins 
depend to a large extent on their binding motifs. 
Consequently, different algorithms have been 
developed to determine similarity of 3D structural 
motifs in proteins using backbone fragment similarity, 
similarity of secondary structure elements [18], or 
similarity of 3D configuration of residues in space [2]. 
The principle of molecular similarity also underlies 
bio-chemical approaches like affinity tagging [22], 
click chemistry [11], or design of chemical probes that 
target protein families with similar active site 
chemistries [6, 14]. In the domain of small molecules 
typical in drug discovery, usage of molecular similarity 
is equally ubiquitous and has been applied in areas 
ranging from diversity analysis for molecular library 
construction, molecular docking and virtual screening 
[9, 13, 26, 27], and a range of investigations aimed at 
modeling molecular structure-property relationships 
where the similarity of a given a molecule with a 
known class (or classes) of molecules is used as an 
important indicator of its in-vitro or in-vivo activity. 
Pertinent examples of such modeling include 
determining “drug-likeness” of molecules [1, 16], 
modeling blood-brain barrier permeation [15], and 
modeling molecular pharmacokinetics or 
pharmacodynamics [19, 20, 24]. Finally, use of 
molecular similarity is central to information retrieval 
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from structural and molecular databases such as [40, 
41, 42], commonly employed in biological and 
pharmaceutical research and development. 

In this paper, we consider the problem of 
determining molecular similarity. Our formulation of 
this problem involves specification of an entire 
molecule during query and requires computing the 3D 
surface-based similarity between the query and model 
molecules. The research presented here specifically 
focuses on small molecules (tens of atoms, molecular 
weight around one thousand Daltons), typical of the 
type used in drug discovery. However, the proposed 
technique can scale-up equally well to larger molecules 
like proteins and problems related to their similarity-
based structural classification. The key contributions of 
this work lie in the similarity formulation being 
considered and in the efficiency and accuracy of the 
proposed approach for determining molecular 
similarity. The distinctions of the proposed similarity 
formulation from the more prevalent ones based on 
searching for sub-structural motifs (sub-structure 
search) are: 
• Molecular representation: It is generally accepted 

that receptors and substrates recognize each other at 
their molecular surface [8]. Therefore, surface-based 
descriptors (see Figure 1) provide representational 
capabilities that are more faithful to the actual nature 
of molecules than commonly used 2D molecular 
graphs-based approaches. Such representations have 
been espoused in the works of many researchers (see 
for example, [19, 20, 24, 28, 31] and references 
therein). The proposed similarity formulation allows 
direct querying and retrieval of molecules when 
they are represented using complex and bio-
chemically relevant surface-based descriptors. 

• Query formulation: In a sub-structure-based search 
the query is specified as a molecular sub-structure 
(typically represented as a 2D molecular 
connectivity graph) and the retrieved molecules are 
constrained to contain the entire sub-structure 
specified in the query. This formulation requires the 
user has to have a clear picture of the structures 
which are to be retrieved prior to issuing the query 
[4]. Typically such detailed knowledge is available 
only when the mechanism of action of the molecule 
is established in terms of its activity as determined 
by specific structural fragments. In contrast, “whole 
molecule” similarity is suitable for exploring 
structural space [4], generating hypotheses, or 
querying chemical databases when detailed 
structure-activity information, at the level necessary 
for sub-structure querying is unavailable. 

• Applications: Many biological properties like 
interaction of molecules with biological membranes 
or receptor-ligand interactions are mediated by 
molecular characteristics like geometry, hydrogen 
bonding, polar molecular surface, electrostatics, and 
hydrophobicity [20] which are surface-based and/or 
defined over the entire molecule. Membrane 
permeation in the human intestine, which is central 
to absorption of an orally administered drug in 
humans and blood-brain permeation of molecules 
are two of the many possible examples of such 
properties. Similarity formulations, such as those 
considered in this paper can therefore be used to 
build models that relate biological properties to the 
structure of molecules (structure-property models). 
In contrast, 2D substructure-based similarity is 
typically ill-suited in the context of studying such 
biological activity. However, if information linking 
substructure(s) to specific activity is available then 
2D substructure-based similarity can be a more 
appropriate measure [4].  

 
1.1. Problem characteristics and challenges 
 

From a computational and algorithmic perspective, 
the problem of determining the similarity of molecules 
when they are represented using complex 3D surface-
based descriptors presents some unique challenges 
which include: 
1. Definition of a standard coordinate system for 

surface-based molecular representations: To 
compare molecules using their surface-based 
descriptions, it is necessary to have a way of 
representing the shape of their surfaces. The 
complexity lies in defining an intrinsic (view 
independent) coordinate system over the curved 
molecular surface that maps a point on the curved 
surface to a point on a standard coordinate system. 
This is necessary to establish a match between 
feature distributions corresponding to two 
molecules (the model and the query). 
Additionally, such a mapping should be one-to-
one between points on the molecular surface and 
the standard coordinate system, so that it can 
faithfully represent the relationship between the 
structure of a molecule and its bio-chemical 
properties. 

2. Multimodal nature of molecular properties: 
Properties like geometry and charge distributions 
that may be used for describing molecules have 
entirely different characteristics. For example, 
while the geometric representation of a molecule 
is unique, its field-effects are superposition-based. 
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Thus, structurally different molecules may show 
similar biological activity (due to similar field-
effects). Representation and similarity 
formulations need to account for such issues. 

3. Extensibility: Depending on the biological context, 
different surface-based molecular properties may 
be involved in determining molecular similarity. 
This requires a similarity formulation to be 
extensible beyond the properties it was originally 
designed for. As a corollary, the formulation 
should also be able to support assignment of 
different weightings or importance to the various 
molecular properties over which similarity is 
determined.   

4. Molecular pose and conformations: During a 
similarity query, the pose of the participating 
molecules can be arbitrary. Further, each molecule 
may be represented by one of many energetically 
minimal configurations, called conformations. On 
one hand the representation and similarity 
formulation should be invariant to molecular pose. 
On the other, it should be sensitive to effects like 
conformational changes since the bio-chemical 
behavior of a molecule can vary significantly 
depending on its conformation. 

5. Query efficiency: It is typical to conduct molecular 
similarity queries over large sets ranging from 
thousands to millions of molecules. The latter 
order of magnitude is especially common in 
pharmaceutical and drug discovery settings. It is 
therefore imperative for similarity determination 
approaches to be computationally efficient. 

6. Validation: Although a number of research efforts 
have focused on the problem of molecular 
similarity, few (such as [25, 34]) have actually 
attempted to validate the significance of proposed 
similarity measures in terms of molecular 
structure-property relationships [4].  This may be 
ascribed to various factors that lead to the 
complexity of such modeling and possible lack of 
appropriate biological activity data. However, 
such a validation step is essential in determining 
how well the underlying bio-chemistry is 
accounted for in the similarity formulation and its 
algorithmic solution.  

The research presented in this paper approaches the 
problem of determining molecular similarity in three 
steps: First, an intrinsic representation for molecules is 
developed by defining a mapping between the closed 
molecular surface and a unit sphere. A molecule can 
then be treated as a collection of distributions defined 
on the sphere, where each distribution represents a 
specific molecular characteristic. Salient to this step is 
the application and extension of  results  from  research  

              
Figure 1: Representation of the Asprin molecule: 
(a) Ball-and-stick representation, (b) Surface-based 
representation 
 
in computer vision on the problem of 3D curved-object 
recognition.  The second step is based on the idea that 
the similarity of two molecules can be obtained by 
comparing the similarity of the respective molecular 
property distributions. In doing so, we employ the 
uniqueness of the spatial distribution of a molecular 
property on the surface of the encapsulating sphere; 
this distribution is invariant to the pose (but not the 
conformation) of the underlying molecule and can be 
used as a constraint to determine the similarity of two 
molecules with respect to the given property. The 
obtained similarity is consequently independent of how 
the molecules are themselves oriented with respect to 
each other. To make the similarity score invariant to 
conformations, a molecule is represented by a set of 
energetically minimized structures or conformers, over 
which the similarity is computed. Finally, to address 
issues related to efficiency, we propose a novel variant 
of histogram-intersection to compute the similarity of 
property distributions corresponding to two molecules. 
The technique of histogram-intersection [36] has been 
shown to be highly efficient and is used extensively in 
information and image retrieval. We seek to take 
advantage of this efficiency when querying large 
collections of molecules. Our variation on this 
technique allows determining the similarity of 
molecular property distributions by considering their 
spatial characteristics. Essentially, high similarity 
scores are obtained only if both the statistical and 
topological natures of the distributions tend to agree. 

We begin this paper with an introduction to 
molecular representations and present an overview of 
the prior research conducted on the problem of 
molecular similarity in Section 2. The proposed 
method is formulated in Section 3. Results from 
multiple experimental studies are reported in Section 4. 
The conclusions from this research and directions of 
possible future work are presented in Section 5. 

 

(a) (b) 
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Figure 2: Illustration of the principle concepts in 
the proposed molecular representation: (a) The 
Gauss mapping, (b) Embedding of a molecule in the 
tessellated sphere, (c) Representation of the 
molecular geometry by surface mapping, (d) The 
local regularity constraint, (e) Superposition-based 
field measurements 
 
2. Molecular representation and prior 
research 
 

In the simplest form, a molecule may be represented 
by using its chemical formula. Other representations 
include the molecular graph, which is based on a 
connectivity matrix where atoms that participate in 
chemical bonds are shown to be connected. This graph 
can also contain information about bond orders and 
can be used to distinguish isomers (same molecular 
formula but different topologies). Traversals of such 
graphs can be used to generate string-based 
representations for molecules by incorporating atomic 
symbols and bond-types encountered during the 
traversal. One such representation is the SMILE string 

representation of molecules. More complex 
representations include surface-representations (Figure 
1(a)), which are obtained by rolling a probe-atom over 
the molecule. The molecular surface being defined as 
the set of points where the surface of the probe atom 
touches the van der Walls surfaces of the atoms 
constituting the molecule. In spite of its seeming 
complexity, efficient algorithms, for example [21], 
requiring O(nlogn) deterministic time and using O(n) 
space exist for computing surface-based 
representations. Other representations can be based on 
the Schrodinger wave equation. However, such 
quantum representations often require solving non-
linear PDEs, which can become prohibitively 
expensive from any non-trivial molecular system 
consisting of more than a few atoms.  

Research in determining similarity of molecules has 
been closely tied to molecular representation schemes. 
Early works in the area like [33] and [39] used 
variations on the sum of inter-atomic distances. Later 
approaches have looked at schemes for atom re-
labeling to minimize a difference-distance matrix [3], 
[32] or decomposing the molecular distance and 
connectivity graphs into subgraphs which are 
numerically characterized and compared [5]. Another 
class of methods [19], [24], [28] has defined molecular 
similarity using surface and field characteristics: First, 
the field-effects around a molecule are estimated. 
Then, the orientation of the query or model molecule 
(a 3D graph), is varied to minimize an RMS error 
between the field values. Other efforts include the 
application of geometric hashing and its variations 
[31]. 

 
3. The proposed method 
 

A pre-requisite for comparing molecules described 
using surface-based representations is the capability to 
map points on the curved molecular surface to points 
on a standard coordinate system. Such a mapping was 
derived by Gauss [17], by using surface orientations to 
map points on an arbitrary curved surface to a standard 
coordinate system defined on a unit sphere. This 
mapping is formally referred to as the Gauss map and 
can be defined as follows: 

Definition 1: Let 3RG ⊂ be an oriented surface in 
Euclidean space. Further, let S  be a unit sphere, called 
the Gaussian sphere. The Gauss map M is the 
mapping SGM →: , where the surface normal for 
each point on the surface G  is translated to the origin 
of the sphere S  and the end points of each normal lie 
on the surface of the Gaussian sphere S (see Figure 
2(a) for an illustration). 

(a) 

(b) (c) 

(d) 
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An important derivative of the Gauss map for 
representing curved surfaces is the Extended Gaussian 
Image (EGI). It is obtained from the Gauss map by 
assuming that the surface G  is evenly sampled into 
patches and that each surface normal is associated with 
a single unit of mass which it votes to the 
corresponding point on the Gaussian sphere. The 
distribution of the mass on the surface of the Gaussian 
sphere, obtained in this fashion depends on the shape 
of the underlying surface and is called its Extended 
Gaussian Image. Even though the EGI mapping does 
not incorporate the spatial relationships between the 
surface patches on G , it possesses certain important 
characteristics that include: (i) If two convex objects 
have the same EGI, they are provably congruent (the 
Minkowski theorem [30]), (ii) As an object rotates, its 
EGI rotates in the same manner, (iii) The EGI mass on 
the Gaussian sphere is inverse of the Gaussian 
curvature of the underlying object surface, and (iv) 
The center of mass of the EGI lies at the origin of the 
Gaussian sphere. 

The properties of the EGI, especially the 
Minkowski theorem provide the foundations for using 
it towards representing and comparing surface-based 
description of objects. However, an inherent problem 
of EGI-type mappings is their dependence on the 
Gauss map which is non-unique for non-convex 
objects. Because of this, more than two points on an 
object surface may be mapped on the same point on 
the Gaussian sphere. Unfortunately, many molecules in 
their stable conformations induce surfaces that are 
non-convex and therefore the application of techniques 
from the EGI family is precluded for their 
representation and matching. In computer vision, 
researchers have attempted to solve such a problem by 
using a spherical attribute image (SAI) which is based 
on iteratively deforming a geodesic surface to fit an 
underlying object. We build on the above research by 
replacing the deformable surface mapping by a fast 
non-iterative mapping-by-probing approach that 
preserves a local regularity constraint and is sensitive 
to the underlying surface shape. We begin by placing 
the molecule inside a semi-regularly tessellated sphere 
(Figure 2(b)), which for purposes of notational 
uniformity we will also denote as S, but distinguish 
from the Gaussian sphere based on the context. The 
placement of the molecule is done such that its center 
of mass coincides with the center of the sphere. Our 
approach for tessellating the sphere is based on [23] 
and involves subdivisions of the triangular sides of a 
20-side icosahedron into sub-triangles. At each point 
of the tessellated sphere we compute three properties 
to describe the molecule, namely geometric shape, 
donor field (due to H-bond donor atoms), and acceptor 

field (due to H-bond acceptor atoms). Our selection of 
these descriptors is due to their importance in various 
molecular interactions and the fact that more complex 
descriptors like polar surface area of the molecule 
(which influences membrane permeability), are 
correlated to donor/acceptor fields [37]. 

In order to motivate the mapping used by us, we 
begin by first noting that the molecular surface, by its 
construction is smooth. At each point Pj of S, the 
molecular surface is probed to determine the point 
closest to Pj (see Figure 2(c)) subject to a local 
regularity constraint illustrated in Figure 2(d)). The 
regularity constraint requires that the probe vector pass 
through the centroid of the plane formed by the 
neighbors of Pj. This ensures uniformity in 
measurement and invariance to translation and rotation 
of the molecule. The distance to the surface point is 
then used as an estimate of molecular shape. The 
measurement of the donor field is done using the 
following three step procedure: 
Step 1: The Hydrogen-bond donor atoms in the 
molecule are identified. Typically these are Nitrogen 
or Oxygen atoms with hydrogen on them. Other ways 
of identification like the PATTY-rule [10] can also be 
used. 
Step 2: The donor field is defined as an isotropic 
Gaussian distribution and the field at point Pj due to an 
atom at position Xi having van der Walls radii ri is 
defined by Eq. (1) below: 
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In Eq. (1) a is a scale factor for the radii. The value of 
a=2, for which 90% of the electron density lies inside 
the van-der walls radius of the atom, is used in all the 
experiments. The reader may note that a similar 
approach for field definition has also been suggested in 
[28]. 
Step 3: At a given tessellate point Pj, having the surface 
normal j, the field strength for each donor atom is 
computed. The direction of each field is given by a 
unit vector obtained by joining the corresponding atom 
to Pj. The resultant field at Pj is defined as the vector 
sum shown in Eq. (2) (also see Figure 1(e)): 

)].(),([)(
>−>−

×= ∑ jiAPfPF i
i

jj

r
                                       (2) 

In this formulation maximum weight is given to those 
atoms whose field direction coincide with the surface 
normal at the specific tessellate point, in computing the 
resultant field. The acceptor field is analogously 
determined. Typically Nitrogen or Oxygen atoms with 
a lone pair of electrons are considered as acceptors. At 
the end of this stage, the molecule is represented by a 
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set of points at each of which three values 
corresponding to the geometric shape, donor field, and 
acceptor field are respectively defined. 

Similarity of two molecules is defined in terms of 
the similarity of their property distributions. Histogram 
intersection provides a rapid way to empirically 
compute such a similarity. Furthermore, it is highly 
efficient and is invariant to translation and rotation of 
the distributions.  However, due to the absence of pose 
information within the molecular descriptors a direct 
application of histogram intersection is not possible. In 
Figure 3, we show the intuition behind our solution to 
this problem. Based on it, our method to obtain the 
similarity of the distributions can be described as 
follows: 
• For each of the distributions P1…PK used in 

representing the molecule, define a (fixed) 
quantization and construct the histograms. Let HL 
denote the histogram corresponding to the 
distribution PL, ],1[ KL∈ and let k denote a specific 
bin in the histogram. 

• Cluster the tessellate points having the same value 
(falling in the same bin k) by adjacency of the 
tessellated surface patches. Compute the centroid for 
each cluster. 

• Compute the distance (constrained to lie on the 
surface of the sphere) for all pair of centroids. 

• Quantize these distances into bins as follows: {[0,1[, 
[1,2[, . . .[C/2-1, C/2[}, where C is the circumference 
of the sphere. Compute the histogram for the 
distance distribution. 

• For two distance histograms DM and DI (with the 
bins indexed by j) the histogram intersections are 
computed using Eq. (3). The distance histogram 
intersection defining the topological similarity of 
values in bin k, denoted by kγ is defined as the 
average of the two intersection values from Eq. (3) 
(to ensure symmetry). 
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• The topologically constrained histogram intersection 

value for a given property distribution PL between 
two molecules M1 and M2 is defined by Eq. (4),  
where the histogram intersection H(M1,M2)γ is 
computed, as shown for the general case, in Eq. (5): 
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Figure 3: Intuition behind determining the 
similarity of molecular property distributions: Each 
distribution in (a) consists of four black and two 
grey elements. The two distributions shown are 
related to each other by a rotation. The property 
(color) histogram for these distributions is shown on 
the right and is invariant to any Euclidean 
transformations of the distribution. However, the 
property histogram is, by itself, insufficient to 
disambiguate distributions as shown by the 
example in (b). Here the distribution is distinct from 
those in (a) and yet yields an identical property 
histogram. The spatial characteristic of the 
distributions, as typified by the histogram of the 
pair-wise distances between elements having the 
same property, is shown in (c) and (d) 
corresponding to the distributions in (a) and (b) 
respectively. As can be seen, such a 
characterization is distinct for each distribution and 
can be used to determine their similarity. Note that 
the distance distribution histograms are shown as 
textured to denote their distinction from the 
property distribution histograms. 
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• The full histogram intersection Hfull(Mi,Mj) between 
two molecules Mi, Mj, is  the average over all 
property distributions of the corresponding 
topologically constrained histogram intersection 
values. To account for molecular conformations, we 
define the similarity of two molecules Mi and Mj as 
the maximum value of the full histogram intersection 
defined over a set of conformations the molecules 
can assume. This is formally described in Eq. (6). 
The conformations for a molecule can be generated 
by finding the local minima of a non-linear function 
that defines the energy of a molecular structure. This 
function contains terms capturing the energy due to 
inter-atomic interactions as well as due to deviations 
in bond length, bond angles, and tertiary angles. 
Typically a standard package like CONCORD [42] 
is used for this purpose. 
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4. Experimental evaluations 
 

The efficacy of the approach was tested using three 
sets of experiments. The experiment design for each 
set incorporated two stages: The first stage involved a 
direct application of the method on a data set to solve a 
specific problem. In the second stage, a comparative 
study was performed by applying a state-of-the-art 
research or commercial technique on the same problem 
and data set. Subsequently the results were analyzed to 
understand the distinctions and contributions of the 
proposed approach.  The three experiments included: 
(a) Validation of the method’s accuracy in query-
retrieval settings, (b) Evaluation of its performance 
(speed), and (c) Validation through applications in 
structure-activity modeling problems.  

 
4.1. Accuracy in query-retrieval settings 
 

In the first stage, the method was tested in a query-
retrieval setting on a subset of 5000 molecules 
randomly selected from the MDDR collection [41]. 
The MDDR is a commonly used reference in drug 
discovery and structural biology and consists of 
molecules that are either marketed drugs or have 
reached advanced stages in a drug discovery process. 

Each of the 5000 molecules was successively used as a 
query against the rest of the molecules in this set. The 
query and model molecules were each represented by 
20 conformers, i.e. 400 distinct molecular structures 
were used per similarity computation. Since the 
proposed method does not require super-positioning of 
the underlying structures for computing similarity, to 
distinguish its performance from approaches that do 
so, a variation of the experiment was performed where 
the query was represented by 20 novel (distinct from 
the model) conformers. It may be noted, that for some 
molecules, 20 novel energetically stable conformers 
could not be obtained. In such cases, as many novel 
conformers as could be derived for each specific 
structure were used. In the second stage of this 
experiment, for purposes of comparison, the query-
retrieval experiments were performed using ISIS [41], 
a widely used commercial 2D chemical database. ISIS 
uses structure-keys in conjunction with indexing for 
answering queries. However, molecular similarity 
using ISIS is strictly 2D-substructure-based and can 
not incorporate issues like conformations. The 
consolidated results from these two stages are 
presented in Table 1. The first row of the table shows 
results obtained with ISIS. The second row presents 
the results obtained with 20 conformers for each of the 
query and model molecules. The final row shows the 
accuracy of the retrieval process when distinct 
conformers (between the query and the model) were 
employed. Here, the asterisk denotes the 
aforementioned fact that for some molecules 20 
distinct stable conformers were not obtained. In this 
setting, of the 5000 molecules, 4910 were correctly 
identified. An analysis of the results obtained in this 
step indicates that the accuracy of the proposed 
approach during query-retrieval is comparable to that 
of ISIS, even though the proposed method addresses 
the query-retrieval problem in a setting that involves 
molecular conformations, surface-properties, and 
superposition-based effects and is much more complex 
than the 2D structural motif-based search used in ISIS. 

 
Method Data 

Size 
Number of 
Conformations 

Accuracy 

ISIS 5000  none 100% 
Proposed 5000 20/20 100% 
Proposed 5000 20/20* 98.2% 

 
Table 1: Summary of results from the query-
retrieval experiment on the MDDR database 
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4.2. Evaluation of the performance (speed) 
 

In the second experiment, the computational 
performance of the proposed approach was tested with 
respect to the system described in [24] and related 
works [19, 25]. This selection was based on the fact 
that both the proposed approach and the one described 
in [24] seek to define the surface-based similarity 
between molecules. Their distinctions lie in how the 
modeling of molecular shape and field-effects are 
accomplished as well as in how the similarity is 
computed. Furthermore, our selection was also 
motivated by the fact that [24] along with its 
derivatives have been extensively applied in 
pharmaceutical research settings [19, 24, 25] and the 
published results as well as our own investigations 
show it to be amongst the fastest approaches currently 
available for determining surface-based molecular 
similarity.  

In our experiment, 30 pre-selected, maximally-
diverse molecules from the MDDR collection were 
compared against each other, with 20 conformers for 
the model and one for the query. Both the systems 
reported a 100% recognition rate on this subset of 
molecules. However, the time requirements were 
significantly different. A graph plotting the time 
required for the similarity computation with the 
proposed technique is shown in Figure 4 (left plot with 
the data points shown as triangles). Figure 4 (right 
plot) shows a comparison of the performance with the 
method outlined in [19] (data points obtained with [19] 
are shown as rectangles). On an average, with the 
proposed technique 120 conformers were processed 
(descriptor generation and matching) every second, 
while with [19], one conformer was processed every 
two seconds on an SGI Indigo2 machine. Another 
recent method [28], available commercially, reports 
speeds of 2 minutes per molecule (on a SUN Ultra-30).  
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Figure 4: Computational performance of the 
proposed method (left) and comparison with [19] 
(right) 
 

4.3. Validation through application in 
structure-activity models 
 

Similarity information from the proposed technique 
was applied for building a structure-activity model for 
modeling and predicting human intestinal drug 
absorption. As mentioned in the introduction, intestinal 
absorption is critical for the success of orally 
administered drugs. Furthermore, it constitutes one of 
the primary reasons for expensive late-stage failures in 
drug discovery. Therefore, robust models linking 
molecular structure to intestinal absorption can have 
significant applications in pharmaceutical research and 
development. The data set used in this experiment 
consisted of 30 compounds that were tested for human 
intestinal permeation using the Caco-2 assay.  The 
Caco-2 (human colon adenocarcinoma cell line) 
provides a close approximation of in vivo absorption 
and can be used to model the epithelial cell layer 
barrier and absorption from the intestinal lumen to the 
blood stream.  The assay protocol used in this 
experiment was designed to measure uni-directional 
flux and all compounds were analyzed at identical 
initial concentrations. The range of measured values 
was between 0.0% (no permeation) to 2.8% (maximum 
permeation) flux units. 

The descriptor design for the structure-activity 
model involved computing the similarity of the 
participating molecules with a predefined set of thirty 
molecules, called the characteristic molecules. The 
computed octanol-water partition coefficient (clogP) 
was used as an additional descriptor. Together, this 
yielded a 31-dimensional descriptor space. The central 
idea, behind the notion of characteristic molecules is 
closely related to the concepts of vector quantization 
[12] and involves tessellation and quantization of the 
d-dimensional molecular descriptor space D into a 
finite subset C of the d-dimensional space. Formally, 
this process can be denoted as a mapping Q, which is 
defined as: 
 

dDjcjmcccCCdDQ ∈∀∧=→ ,},...,2,1{,:       (7)                        

Representing the molecules in terms of their 
similarity to the characteristic molecules introduces an 
implicit dimensionality reduction. We refer the reader 
to [35] for details on such dimensionality reduction 
approaches in structure-activity modeling. Two 
measures were used for evaluation of the results. The 
first is a ratio-scale measure called cross-validated 2r  
and shows how well the model predicts data that was 
not used during model construction. The definition of 
this measure is presented as Eq. (8): 
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In Eq.(8), iV  is the experimentally determined 
property of the molecule i, iP  is its predicted property, 

and 
−
V is the mean experimental property value. The 

second measure is an ordinal measure called Kendall’s 
τ , that shows how well the ordering of the data is 
preserved during prediction by the model. A perfect 
value of 1=τ  is obtained when the predicted order 
coincides with the order as determined by actual 
experimental property values. This measure is 
computed, for n molecules as depicted in Eq (9). 
 

2/)1(
__

−
−

=
nn

orderingincorrectorderingcorrectτ              (9) 

The ordinal measure is important because the 
ordering (or prioritization) of the molecules is typically 
more robust to experimental variability than pure error-
based measures. Using a combination of the above 
measures, therefore allows evaluation of a model both 
in terms of its numeric predictive accuracy, and in 
terms of how well it can maintain prioritization of the 
molecules. 

Model construction was done using the 20 training 
molecules. As part of the descriptor selection step, the 
complete cross-correlation matrix of the descriptors 
was computed and the top eight least correlated 
descriptors selected. A backpropogation network with 
a single hidden layer was used to learn the (empirical) 
mapping between the molecules as defined by the 8-
dimensional feature vector and their permeability 
values. Learning was stopped when the cross-validated 
error became lower than a predefined threshold. Figure 
5(a) shows the leave-one-out cross-validated 
performance of the learning model when the similarity 
relative to the characteristic molecules was computed 
using the algorithm in [19]. In this setting, one 
compound was randomly excluded from the training 
set and the remaining compounds used to learn a 
model that predicted the permeability for the excluded 
compound. For the model that was learnt, the value for 

cross-validated 2r  equaled 0.64 and Kendall’s τ  
equaled 0.29. Figure 5(b) shows the performance of 
the learned model in a leave-one-out cross-validation 
setting for the training set when the proposed similarity 
measure was used. In this case the cross-validated 

2r equaled 0.97 and the value for Kendall’s τ  was 
0.65. It should be emphasized that in both experiments 
an identical  learning  algorithms  (single  hidden  layer  

 
Figure 5: Performance in structure-activity 
modeling. Permeation of each compound is 
presented by two adjacent bars with predicted 
values shown by lighter shaded bars on the left and 
measured values by darker shaded bars on the 
right: (a) Leave-one-out prediction results from the 
learning model obtained by using similarities 
determined by the method [19]. (b) Leave-one-out 
results using similarity determined by the proposed 
algorithm. (c) Performance on the test set  
 
neural network with back-propagation) was used and 
the only distinction laid in the similarity values (due to 
the corresponding approaches for determining them). 
We also note that in both the experiments, the values 
for Kendall’s τ  typically tended to be low. In case of 
the proposed approach this was primarily because the 
original data had compounds that showed 0% 
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absorption (no absorption). However, the model 
assigned very low (albeit non-zero) absorption values 
to these molecules, thereby leading to a change of 
ordering amongst them. However, the model based on 
similarities derived using [19], showed ordering errors 
across the entire spectrum of values. Finally, (c) shows 
the performance of the structure-activity model on the 
test set of 10 molecules. The prediction results for the 
test set is also tabulated and presented in Table 2.  
 

Compound ID Predicted 
Permeability 

Actual 
Permeability 

000753 1.79 1.83 
091217 0.09 0.20 
322835 0.09 0.24 
422025 2.83 3.01 
489595 3.16 3.01 
525792 3.15 3.06 
531746 0.09 0.15 
598738 0.24 0.26 
696705 2.36 2.51 
835218 0.08 0.11 

 
Table 2: Predicted and measured permeability 
values for the molecules in the test set. All 
permeability values are in %flux units. The 
compound ID is a unique numeric identifier for 
each molecule and has no relation to the molecular 
structure 
 

In Figure 6, we present analysis of the method’s 
performance in leave-n-out cross-validated 
experiments. In the leave-n-out setting, 7 of the 20 
training molecules were randomly excluded; the 
remaining 13 molecules were then used to build a 
model that predicted the values for the 7 excluded 
molecules. Since a significant number of samples can 
get left out in such a formulation, it can provide a good 
indication of the robustness of the model. To simplify 
the presentation, the absorption values and predictions 
are grouped into three bins: bin 1 corresponded to 
molecules exhibiting poor absorption (defined to be 
less than 0.5% flux units), bin 2 corresponded to 
medium absorption (between 0.5% and 1.0% flux), and 
bin 3 corresponded to molecules that showed high 
permeation (greater than 1.0% flux). The results shown 
in Figure 6 are based on the performance of the model 
in 25 iterations of the leave-n-out experiment. The bar-
chart in Figure 6(a) shows the number of incorrect bin 
assignments that were made: Over the 25 iterations, 
85% of the overall bin assignments were correct and in 
15% of the assignments, an error of one adjacent bin 
was  observed  (i.e. a  compound  with  low  absorption 

 
Figure 6: Analysis demonstrating the robustness of 
the structure-activity model using leave-n-out 
cross-validation settings: (a) overview of the 
correctness of bin assignments, (b) distribution of 
the prediction results  
 
got assigned to the medium absorption bin or vice-
versa, or a medium absorption compound was assigned 
to the high absorption bin). However, in none of the 
iterations, was a low absorption compound predicted 
as a highly absorbed one or a highly absorbed 
compound predicted to be a poorly absorbed one. 
Figure 6(b), presents the distribution of the prediction 
results across the 25 iterations of the leave-n-out cross-
validation experiment: 11 of the 25 iterations resulted 
in perfect bin assignments and 7 of the 25 iterations 
had 83% correct bin assignments. Further, 6 of the 
iterations had 67% accurate assignments and only one 
of the 25 iterations had 50% accuracy in bin 
assignments. These statistics indicate the high 
consistency in the prediction performance of the model 
across variations in the training set. The reader may 
also note that all non-accurate assignments involved 
miss-classifications by no more than one adjacent bin 
as described earlier.   
 

0

10

20

30

40

50

60

Pe
rc

en
t o

f T
ot

al
 in

 E
ac

h 
B

in

Bin 1 Bin 2 Bin 3

Predicted Assignments

0

2

4

6

8

10

12

N
um

be
r o

f R
un

s

17% 33% 50% 67% 83% 100%

Fraction Correct

Bin 3

Bin 2

Bin 1

Measured

(a) 

(b) 

Proceedings of the 2004 IEEE Computational Systems Bioinformatics Conference (CSB 2004) 
0-7695-2194-0/04 $20.00 © 2004 IEEE 



5. Conclusions 
 

In this paper, we considered the problem of 
defining similarity between molecules based on 
complex surface-based representations. Such 
representations capture the physics of the molecules 
better than commonly used molecular-graph-based 
approaches and can therefore have significant 
relevance in molecular query-retrieval, similarity-
based exploration of structural space, and in 
construction of robust structure activity models. We 
have proposed a novel approach for defining a 
standard coordinate system for describing complex 
surface-based molecular descriptions. In this approach 
the multimodal nature of molecular properties can be 
accounted for. For computing the similarity of 
molecules defined in this coordinate system, we 
propose a novel technique to compare the molecular 
property distributions using a topologically-
constrained formulation of histogram intersection. In 
this formulation, the numeric as well as the spatial 
(topological) characteristics of molecular surface-
based property distributions can be accounted for. 
Experimental results indicate that the similarity 
formulation can be used for highly-accurate query-
retrieval and outperforms, in terms of computational 
speed, existing research and commercially available 
solutions for determining surface-based molecular 
similarity. The proposed approach was also validated 
by applying it in building structure-activity models for 
complex bio-chemical properties. 

The explosive increase in the size of structural 
(both protein and small molecule) databases and their 
importance in contemporary biology and drug 
discovery, underlines the necessity for fast and 
accurate techniques for determining molecular 
similarity. The method presented in this paper is a 
fundamental advancement in this area and can be 
expected to find broad applicability in applications 
across biological and pharmaceutical research where 
molecular similarity plays an important role. 
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