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Abstract. The function of a protein is dependent on whether and how it can in-
teract with various ligands. Therefore, an accurate prediction of protein-ligand 
interactions is paramount to understanding proteins’ biological mechanisms and 
hence to the development of therapeutic agents. A ligand is most likely to bind 
in the largest pocket on the surface of the protein. Moreover, it requires that the 
pocket meets certain structural and geometric criteria that allow the ligand to 
“anchor” in place by forming stabilizing interactions with the protein. Based on 
this logic, many geometry-based algorithms have been developed to predict 
protein-ligand interactions.  Here we investigate a geometric-hashing based al-
gorithm – to see how well it distinguishes proteins that do and do not bind a 
ligand, and propose enhancements that improve its robustness. We also intro-
duce an alternative way of integrating geometric and biochemical properties of 
multiple binding mechanisms into a single representation. 

1   Introduction 

Delivering a drug to market is a very lengthy process [3], much of which is spent in 
labs experimenting to find compounds that have good efficacy for the targeted pro-
tein. If this screening process could be expedited, drug development cost and time to 
market could be significantly reduced. This need has fueled the development of new 
computational approaches aimed at performing accurate virtual screening. A critical 
problem in this context is to correctly dock a ligand onto a receptor surface and in-
volves both geometric and physicochemical reasoning.  

Computational solutions to this problem are based on the postulate that one of the 
key requirements for binding is that the ligand has to be “anchored” in a small pocket 
on the surface of the protein, called the active site, through hydrogen or covalent 
bonds, or interactions such as hydrophobic or hydrophilic ones. Figure 1(c) illustrates 
an example of stabilization via hydrogen bonds. These stabilizing bonds and interac-
tions can be formed only with the nearest atoms at specific locations. For this reason, 
the spatial distribution of atoms is thought to play a key role in ligand-protein binding, 
and hence suggests that the geometric definition of an active site is a critical and nec-
essary [12] component in determining the protein’s affinity for a ligand.  

At the state-of-the-art, techniques that use geometry to screen for similarities be-
tween active sites can be broadly divided into two categories [12]: those that charac-
terize general properties of an active site, and those that find sites that resemble an 
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            a.               b.              c.               d. 

 

Fig. 1. (a) Structure of Adenosine Triphosphate (ATP). (b) A protein (PDB ID: 2HIX) and its 
active site. The close-up shows only atoms that are within 5 Å of the ligand (ligand not shown). 
(c) Example of ligand-protein interactions. ATP shown in black, active site of a protein in gray, 
some of the stabilizing hydrogen-bonds are shown as white, broken lines. (d) Model of ATP 
active site. Spheres represent atoms that make-up the model; ATP is shown as thick, dark lines. 

already known active site. Here we focus on the latter, by considering approaches 
based on geometric hashing, an algorithm adopted from the field of computer vision, 
that has found significant applicability in this context.  

Geometric hashing uses a model of a known active site to search for similar ones in 
other target proteins. One of the strengths of this approach is its ability to deal with 
noisy or incomplete data. One of its major drawbacks is its over-specificity due to a 
strong bias towards the geometry and physical properties of a single protein underly-
ing the model. To overcome this limitation, we present an alternative that is based on 
robust, example-driven characterization of the binding site geometry. The proposed 
method starts by analyzing structurally diverse molecules which share their ability to 
bind a specific ligand but might differ in their mechanisms of interaction with it.  
Next, a voting-mechanism is used to extract from their binding sites characteristics 
that are common to multiple such proteins. Lastly, these features are integrated into a 
single arrangement of atoms representing all of the inspected binding mechanisms. 
This method not only limits the model’s favoritism for any particular binding mecha-
nism but, also, ensures that the pocket definition is deeply grounded and takes into 
account implicit geometric, physical, and chemical factors involved in the binding.  

With this improved model, we then move on to investigate whether we can further 
improve on the robustness of geometric hashing for prediction of ligand-protein inter-
actions. Because this approach can produce many possible solutions, careful scoring 
of “goodness” of matching is of key importance. Scoring is very sensitive to whether 
more emphasis is placed on the number of good matches or on their quality. How to 
choose the balance between these metrics depends on the data set. The former ap-
proach, which gives more weight to tightness of the fit, is more feasible if one wants 
to find partial regions that have an exact or very close match between them since it 
does a good job dealing with partial data; the latter approach is better if one wants to 
find the largest possible areas of similarity. Here we describe the pros and cons of a 
few approaches to finding the best possible balance between the two, and their bio-
logical significance.  
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2   Proposed Methods 

Based on the geometric hashing algorithm, we created a model for an active site of 
Adenosine Triphosphate (ATP) (figure 1.a), a ubiquitous molecule playing a key role 
in intracellular transfer of energy. ATP was chosen because of the availability of 
structural data of proteins that are known to bind it at known locations [9].   

We used unrelated, ATP-binding proteins to create our model and to evaluate our 
scoring methods. Using the Visual Molecular Dynamics (VMD) [11] tool, each of 
these proteins was stripped down to atoms within 3-5 Å from the bound ligand (figure 
1.b). The rest of the atoms were ignored because they were assumed to be too far 
from the active site to significantly impact binding. 

2.1   Base Creation and Transformation 

Following the first step of geometric hashing, feature points were extracted; in this 
case, atoms of an active site were used for this purpose. Then, similarity between 
two binding sites – a model and a target – was investigated by comparing all possible 
transformations in 3-dimenssional space of one to that of the other. To do that, all 
possible permutations of three distinct atoms were found and used to create triplets 
to form triangular bases in 3D space. For each of the bases, transformation was done 
so that its vertices were placed: at the origin (0,0,0), on the X axis (x, 0, 0), and in 
the XY plane (x,y,0). The transform was then applied to all other atoms of the active 
site.  

Every base of one protein was tested against all bases of another to find their best- 
fitting spatial confirmations. First, bases were tested for match. Two bases matched if 
after transformation onto the coordinate system they had: (1) the same atom types at 
the corresponding vertices, and (2) spatial location of their corresponding vertices 
within some specified threshold (set to 1 Å). If these conditions were met, transforma-
tions of the two proteins with respect to these bases were compared. Whenever atoms 
of the same type from the two proteins translated to approximately the same spatial 
location (also set to 1Å from each other) these atoms were considered matching. 
These matches were then used to evaluate the quality of the fit between the two bases. 

2.2   Finding Best Fitting Bases 

We evaluated four methods of scoring the fit between bases: 

Overall Root Mean Square Deviation (RMSD): In this approach, after both proteins 
have been transformed, for every atom of the model protein a closest matching atom 
of the target protein was found. The distance between each atom pairs was used to 
compute the overall RMSD. 

Top 80% RMSD: Our second approach, similarly to overall RMSD, found for every 
atom of one protein a closest atom in the other. This time, however, instead of taking 
all distances to compute the score, we only considered the top 80% best atom pair-
ings. The worst scoring 20% were ignored.   
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RMSD of Matched Atoms: The third method computed RMSD for just atoms that 
matched. If a transformation found a close fit (noise threshold 1Å) between two atoms 
of the two proteins, the atom pair was included in the calculation of RMSD. Atoms 
that did not have a match within the allowable threshold were ignored. This method 
also required a minimum of 5 matching atoms.  

Most Matched Atoms:  Our last evaluation method gave best scores to transformations 
that resulted in the highest number of matched atoms and which had a global RMSD 
under 1. 

2.3   Computation of the Binding Site Model 

We used nine different ATP-binding proteins (2HIX, 2J9L, 2OOY, 2HF4, 2EWW, 
2HVY, 2F43, 1Y64, and 1MO8) to build our model, which was created by finding the 
best fit of atoms of the active site of the template protein (2HIX) and of each of the 
other eight target proteins.  Each best fit would cast a vote on atoms of the template 
that were matched to atoms of the target. In order to avoid bias towards any of the 
base selection algorithms, this process was repeated six times, using a different tech-
nique each time – one of the above described ones, plus two others that were only 
used for model creation but not for base fitting evaluation. These additional methods 
were (1) a modification of method RMSD of Matched Atoms which did not enforce an 
atom match minimum; and (2) a modification of Most Matched Atoms which removed 
the RMSD threshold constraint. 

After performing comparisons using each of the techniques and with all of the pro-
teins in the data set (this resulted in 48 alignments), votes were tallied. Atoms of the 
2HIX active site that had at least 5 votes from at least two different evaluation meth-
ods were used as part of a model.  

2.4   Evaluation of Scoring Methods 

In order to evaluate our base matching techniques we tested them against two differ-
ent data sets. For the first set, we selected active sites of thirteen known ATP-
binding and -nonbinding proteins (table 2). The second data set was designed to test 
how well each technique aligned our model, which, as described above, consisted of 
a small subset of atoms from the active site of 2HIX, with a larger portion of the 
same active site. A total of 157 atoms were selected from the active site; each selec-
tion was done based on distance from ATP. The resulting pool of atoms was a super-
set of the model. Then, one by one, we removed from the set 10 atoms that were also 
present in the model (the model was unchanged, however). In this way, we created 
11 new test data sets: 2HIX_all, which contained all 157 atoms, and 2HIX_less1 – 
2HIX_less10, each of which had one to ten atoms removed (respective atom counts: 
156 to 147). Together, these and the 13 shown in table 2 (total 24) were used as our 
test data.  

In each evaluation of model-target pairs, two metrics of best fit were gathered: the 
number of atoms matched (N) and depending on the method of evaluation RMSD of 
either all, top 80%, or just the matched atoms (R). The final score was the product of 
N and the reciprocal of R (i.e., S = N * 1/R). 
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Table 1. Atoms making up the model. Only atoms that received at least 5 votes using at least 
two different scoring schemes were used. For spatial representation of the model see figure 1.d. 

Summary of Votes 
# Votes # Methods Residue x y z Symbol 

10 4 LYS 11.351 29.733 18.933 C 
5 2 TYR 12.16 26.491 15.053 N 
7 2 ARG 19.336 25.785 21.914 C 

13 5 ARG 18.899 28.507 26.98 C 
5 2 GLU 15.775 24.236 18.813 O 

20 5 PHE 20.149 25.464 14.586 C 
28 5 PHE 21.012 26.236 15.354 C 
20 5 PHE 20.919 26.261 16.744 C 
11 3 PHE 19.916 25.505 17.387 C 
8 3 MET 15.763 31.245 15.317 C 
6 3 LYS 19.976 29.852 13.22 N 

23 6 ARG 17.982 34.78 25.432 C 
10 4 ARG 17.428 33.79 24.751 N 
19 6 LYS 14.799 34.08 21.473 C 

9 3 LYS 14.381 32.963 22.409 N 

Table 2. Proteins used to evaluate base-fitting methods. Relation refers to structural similarity 
to 2HIX, an ATP-dependent DNA ligase from S. Solfataricus [7]. 

Relation Symbol Description 
neighbor, ATP 1A0I ATP-dependent DNA ligase from Bacteriophage T7. 
neighbor, no ATP 1VS0 Component of Mycobacterium DNA ligase D  
unrelated, ATP 1XMJ Human deltaf508 Nbd1 domain 
unrelated, ATP 1V1B 2-keto-3-deoxygluconate kinase from thermus thermophilus 
unrelated, ATP 2J9L Cytoplasmic domain of the human chloride transporter 
unrelated, ATP 1MO8 ATPase
unrelated, ATP 200Y Adenylate sensor from AMP-activated protein kinase 
unrelated, ATP 2HF4 Monomeric actin 
unrelated, no ATP 1C97 Isocitrate complex of aconitase 
unrelated, no ATP 2B3X Orthorhombic crystal form of human cytosolic aconitase 
unrelated, no ATP 2IPY Iron regulatory protein 
unrelated, no ATP 1Q5O Hcn2j 443-645 
unrelated, no ATP 1LB2 E. Coli Alpha C-Terminal Domain Of RNA Polymerase.  

3   Results and Experimental Evaluations 

We created a model of an active site for ATP docking based on several different, 
known ATP-binding proteins. We then used this model to evaluate four different 
alignment scoring techniques, each of which was based on geometric hashing.  

3.1   Model 

Because we choose random ATP-binding proteins to build our model, we expected 
that they would vary in their interactions and binding mechanism with their ligand. 
Visual inspection verified our prediction. The portions of proteins that were extracted 
around their ligands were of different shapes and sizes. Active sites of some proteins 
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interacted mostly with the base (the part of ATP consisting of two rings; see figure 
1.a), others with phosphate group (the linear “tail” of ATP; see figure 1.a), but most 
with both parts (figure 2). The ligand was also positioned in each of these active sites 
in different poses (figure 3). These two factors contributed to a vast diversity of 3-
dimentional conformations – virtually no two active sites were the same. Therefore, 
extraction of features common to all, and compilation of them into a single model was 
one of the key challenges.  To address this, we utilized our geometric hashing-based 
voting approach and several unrelated proteins. In this way, we were able to combine 
into one model implicit geometric, physical, and chemical factors involved in a vari-
ety of mechanisms. The final model consisted of 15 atoms, which are listed in table 1 
and rendered in figure 1.d. 

3.2   Evaluation of Scoring Methods 

Most biological applications that use geometric hashing for finding the best alignment 
between either atoms or feature points of two proteins evaluate the “goodness” of the 
match based on the overall RMSD [12]. In order to see if we could do better than 
RMSD, we evaluated each of the four here described methods. We tested how well 
each found the best base alignment and how well each filtered out active sites that did 
and did not bind ATP. 

Overall RMS: First we evaluated how well the overall RMSD method picked the best 
base alignment of two segments of the same protein but of different sizes. To do this, 
we performed base pair alignment of our model and each of the following targets: 
2HIX_all and 2HIX_less1 through 2HIX_less10. We expected that with all atoms 
present (2HIX_all) this method would be able to find the perfect alignment but that as 
atoms were removed and the number of overlapping points diminished, it would even-
tually fail. Our results verified our hypothesis. This method was able to find the per-
fect alignment with up to 7 atoms removed (47% removed).  

Secondly, we evaluated this method based on how well it filtered out ATP-binding 
proteins from a pool of ATP-binding and -nonbinding targets. After aligning each of 
the 23 protein targets to the model, scores were computed and then used to rank the 
proteins (table 3.A). Not surprisingly, the best score was obtained by targets 2HIX_all 
through 2HIX_less7 (in that particular order), followed by 2HIX_less8 even though 
this method failed to find this protein’s correct base alignment.  The next best scoring 
protein was a 1A0I, which is structurally very closely related to 2HIX and which 
binds ATP. However, the scores of the remaining 12 proteins did not seem to follow 
any predictable pattern. Targets built based on 2HIX that had more than eight atoms 
removed scored lower than some of the unrelated proteins. Similarly, about half of the 
ATP-nonbinding proteins scored better than their ATP-binding counterparts (figure 
4). These data indicate that this method does well only with highly conserved struc-
tures which most likely bind ligands in similar poses. Figure 3(a) shows an example 
of confirmations of ligands of the model and a closely related protein which was 
scored very well by this method. 

Top 80% RMSD: We hypothesized that this approach would handle noisy data, such 
as missing data and imperfect fit, better and more consistently than the overall  
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Fig. 2. Diversity of ligand interactions with active sites of proteins used to build and evaluate 
the model. Each shown active site includes atoms within 4Å of the ligand, ATP, which is 
shown as black, thick lines. (a) 2HIX – protein based on which the model was built; (b) 2EWW 
– used in voting to create model; (c) 1MO8 and (d) 2OOY were used for both model creation 
and method evaluation. 

   
 

Fig. 3. Diversity of ligand binding conformations. The base portions of ligands were aligned; 
dark colored is ATP in its confirmation when docked in the active site of 2HIX, a protein based 
on which the model was created; light color shows ligands in their pose in active sites of pro-
teins: (a) 1A0I – structurally closely related to 2HIX (note the similarity in ligand conforma-
tion), (b) 1V1B, (c) 2EWW, and (d) 2OOY. Proteins (a) and (b) were used only in evaluation; 
protein (c) just to build model; (d) used for both. 

RMSD method. Surprisingly, it had the same threshold (7 atoms removed from the 
target) for finding the correct alignment. Similarly, it did equally well at filtering out 
structurally closely related proteins. It gave these proteins better scores than it gave to 
the 2HIX targets with more than 7 atoms removed. This suggests that it performs 
similarly well with missing data as it does with noisy data, but only if the model and 
target have high similarity (table 3.B). As was the case with overall RMSD, this 
method failed to distinguish the remaining ATP-binding from nonbinding targets. The 
rankings of the scores received by each target protein did not suggest that there is 
consistent preference for ATP-binding proteins (figure 4). 

RMSD of Matched Atoms: This method was developed based on the assumption that 
not all atoms of the model were always required for binding. This was drawn from the 
fact that our model was built from a wide variety of ATP-binding proteins, and there-
fore, contained information relevant to several mechanisms. Because each ATP-
binding protein had a somewhat different way of interacting with the ligand and hence 
anchoring via differently distributed atoms, the atoms contained in the model were 
unlikely to all be used simultaneously for binding. Based on this, we decided to re-
move the penalty for unmatched atoms that both the overall and top 80% RMSD 
methods had. The penalty originated from the inclusion in scoring, by both of these 



186 J. Lipinski-Kruszka and R. Singh 

methods, of atoms with no close fit. Each time a base alignment contained one or 
more such atoms, the total RMSD was negatively impacted. In order to avoid this we 
decided to compute RMSD only for atoms that did have a match. In order to ensure 
that the match is of significant length we added a constraint that at least a third of the 
atoms of the model have to have a close mate in the target.  

We hypothesized that this method would perform well in finding partial regions 
with the tightest fit possible. And indeed, it did do a good job at performing perfect 
alignments between the model and the 2HIX targets with removed atoms. It was able 
to reliably find perfect fit for all of them, even the ones that contained as few as 5 of 
the atoms that were also contained in the models. 

Moreover, this method did significantly better at filtering ATP-binding and -non-
binding proteins. Out of the 24 target proteins that we tested, most that did use ATP as a 
ligand scored better than those that did not. There were two exceptions – one, 2OOY, an 
ATP-binding protein, obtained the lowest score of all of the test targets. The second 
exception was an ATP-nonbinding protein, 1Q5O. It obtained a score better than three 
of the ATP-binding proteins. It was also interesting to observe that it did not rank the 
structurally closely related proteins as highly as the other methods did. It did not give 
these proteins a score that was highest right after that of self-superset targets (2HIX-x) 
(table 3.C, figure 4). Investigation of ligand poses of proteins that scored well using this 
method revealed that it was able to handle a diversity of 3-dimentional confirmations. 
Figures 3(a) and 3(b) show poses of ligands of the two best scoring proteins. 

Most Matched Atoms: Our last approach concentrated on evaluating bases based on 
the number of atoms that were matched. Our test verified our hypothesis that the ten-
dencies of this approach were to pick alignments that found a “good enough” match 
for as many atoms as possible; it lacked sensitivity for shorter regions with very close 
match. This method turned out to perform quite similarly to overall RMDS. It was 
able to correctly align the model to the target with up to 8 of the atoms missing, at 
which point it ranked the target on par with other ATP-binding and -nonbinding pro-
teins (table 3.D). Ranking of the scores did not result in any noticeably meaningful 
pattern and did not separate binders from non-binders (figure 4). 
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Fig. 4. Scores of ATP binders and nonbinders using method A: Overall RMSD, method B: Top 
80% RMSD, C: RMSD of Matched Atom, and D: Most Matched Atoms. (a) Ratios of average 
scores obtained by ATP-binding proteins to those of ATP-nonbinding proteins. Ratio of 1 
indicates that a binder cannot be distinguished from a nonbinder. (b) Average rank of ATP-
binding and -nonbinding proteins. 
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Table 3. Results of evaluation of the four methods of base alignment scoring. Each sub-table 
contains ranked results of the matching between the model and each of the proteins listed in the 
left hand columns. Shaded rows contain proteins that do not bind ATP; clear rows contain 
proteins that do. Because scores in each of the sub-tables were computed using a different 
scoring technique, they should not be cross-compared. The cross-table scores by themselves are 
not informative enough to evaluate which method obtained a better alignment. This can only be 
done by further inspection. However, it is expected, in all categories, that proteins that do not 
bind ATP would score lower than those that do and, therefore, sorting by score would filter 
them down to the bottom of the table. Method (C), the RMSD of Matched Atoms, performs best. 

A. Overall  
RMSD 

protein score 
2HIX_less4 27.99 
2HIX_less5 20.24 
2HIX_less7 11.763 
2HIX_less8 9.86 

1A0I 7.99 
2HF4 6.22 

2HIX_less9 6.08 
1VS0 5.43 
1V1B 4.96 
2IPY 4.79 
2B3X 4.64 
1LB2 4.07 
1XMJ 3.48 
2J9L 3.34 
1Q5O 3.27 
1MO8 2.41 
1C97 1.30 
200Y 1.28  

B. Top 80% 
RMSD 

Protein score 
2HIX_less4 93.22 
2HIX_less5 42.02 
2HIX_less7 16.994

1A0I 11.54 
2HIX_less8 10.62 
2HIX_less9 10.62 

1V1B 9.23 
2IPY 8.97 
2B3X 7.61 
1VS0 7.60 
1Q5O 7.54 
1XMJ 7.07 
1MO8 6.09 
2HF4 5.28 
1LB2 3.60 
2J9L 2.77 
200Y 2.58 
1C97 1.76  

C. RMSD of 
Matched 

protein score 
2HIX_less4 ∞ 
2HIX_less5 ∞ 
2HIX_less7 ∞ 
2HIX_less8 ∞ 
2HIX_less9 ∞ 

1V1B 70.42 
1A0I 58.77 
1XMJ 41.67 
2J9L 36.76 
1Q5O 34.48 
1MO8 30.49 
2HF4 30.49 
1VS0 27.37 
2IPY 25.80 
2B3X 22.73 
1C97 17.86 
1LB2 17.21 
200Y 13.55  

D. Longest  
Match 

protein score 
2HIX_less4 ∞ 
2HIX_less5 ∞ 
2HIX_less7 ∞ 

2J9L 25.86 
1A0I 18.32 
1C97 17.86 

2HIX_less8 16.81 
2HIX_less9 16.81 

1VS0 16.16 
1Q5O 15.90 
1V1B 14.93 
2HF4 14.44 
200Y 13.55 
1MO8 13.49 
2B3X 12.97 
1XMJ 12.90 
2IPY 12.22 
1LB2 10.99  

4   Conclusions 

In this paper, we proposed and investigated multiple improvements to the robustness 
of geometric hashing based approaches to predicting ligand-protein interactions. We 
considered four methods of measuring the “goodness” of fit between a model and an 
active site. Our investigations demonstrate that the current most commonly used scor-
ing technique – an Overall RMSD of the match – performs well with partial data and 
does well finding similarities between structurally closely related proteins. However, 
it performs poorly in terms of distinguishing between unrelated proteins that bind and 
those that do not bind ATP. Two of the other evaluation methods: Top 80% RMSD 
and Most Matched Atoms, also have similar problems. They were unable to predict 
which proteins did bind the ligand. The RMSD of Matched Atoms technique per-
formed notably better. Ranking of scores received by various proteins revealed that 
this method performed better in distinguishing between binders and nonbinders. 

The presented model of an active site was built utilizing a novel data-driven ap-
proach. Because it was built based on active sites of several, unrelated proteins it 
reflected properties of a diverse range of binding mechanisms. We postulate that  
the proposed approach and binding-site models derived from it present important 
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advantages in comparison to other methods in terms of their robustness to missing 
data, and their ability to handle variations in the 3D poses of ligands. Furthermore, 
being derived from a number of structurally diverse binding mechanisms, it provides 
a more general binding site definition than techniques that only analyze a pair of in-
teracting molecules.  Our future work is directed at comparing the quality of binding 
sites derived using the proposed method with those obtained using other techniques.  
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